Skip to main content

Defect Equilibria and Kinetics in Crystalline Insulating Oxides: Bulk and Hetero-Interfaces

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Materials Modeling

Abstract

Metal oxides fuel our modern technology. In order to sustain a continuous technological advancement, we strive to understand, predict, and control the behavior of metal oxides under different thermodynamic conditions. Since defects are responsible for the major part of the properties of metal oxides, it is highly desirable to have powerful predictive models for defect equilibria and kinetics in oxides and their interfaces. In this chapter we show that a fruitful coupling between electronic structure methods, thermodynamics, electrostatics, and transport theory provides a coherent framework for the study of defect equilibria and kinetics of metal oxides, in their bulk as well as near their interfaces. We present demonstrations of this framework on the ZrO2 model system and discuss the remaining fronts that need further research and method development efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abriata JP, Garcés J, Versaci R (1986) The O–Zr (Oxygen-Zirconium) system. Bull Alloy Phase Diagr 7(2):116–124

    Google Scholar 

  • Austin IG, Mott NF (2001) Polarons in crystalline and non-crystalline materials. Adv Phys 50(7):757–812

    ADS  Google Scholar 

  • Baiutti F, Logvenov G, Gregori G, Cristiani G, Wang Y, Sigle W, van Aken PA, Maier J (2015) High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping. Nat Commun 6:8586

    ADS  Google Scholar 

  • Callen HB (1985) Thermodynamics and an introduction to thermostatistics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Cao Q, Cheng Y-F, Bi H, Zhao X, Yuan K, Liu Q, Li Q, Wang M, Che R (2015) Crystal defect-mediated band-gap engineering: a new strategy for tuning the optical properties of Ag 2 Se quantum dots toward enhanced hydrogen evolution performance. J Mater Chem A 3(40):20051–20055

    Google Scholar 

  • Chi Y-T, Youssef M, Sun L, Van Vliet KJ, Yildiz B (2018) Accessible switching of electronic defect type in SrTiO3 via biaxial strain. Phys Rev Mater 2(5):055801

    Google Scholar 

  • Cox B (2005) Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J Nucl Mater 336(2):331–368

    ADS  Google Scholar 

  • Emin D, Holstein T (1969) Studies of small-polaron motion IV. Adiabatic theory of the Hall effect. Ann Phys 53(3):439–520

    ADS  Google Scholar 

  • Erhart P, Albe K (2006) First-principles study of migration mechanisms and diffusion of oxygen in zinc oxide. Phys Rev B 73(11):115207

    ADS  Google Scholar 

  • Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162(1):30–40

    Google Scholar 

  • Foster AS, Lopez Gejo F, Shluger AL, Nieminen RM (2002a) Vacancy and interstitial defects in hafnia. Phys Rev B 65(17):174117

    ADS  Google Scholar 

  • Foster AS, Shluger AL, Nieminen RM (2002b) Mechanism of Interstitial Oxygen Diffusion in Hafnia. Phys Rev Lett 89(22):225901

    ADS  Google Scholar 

  • Franciosi A, Van de Walle CG (1996) Heterojunction band offset engineering. Surf Sci Rep 25(1):1–140

    ADS  Google Scholar 

  • Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86(1):253–305

    ADS  Google Scholar 

  • Gavartin JL, Muñoz Ramo D, Shluger AL, Bersuker G, Lee BH (2006) Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl Phys Lett 89(8):082908

    ADS  Google Scholar 

  • Goodenough JB (1971) Metallic oxides. Prog Solid State Chem 5:145–399

    Google Scholar 

  • Hatano Y, Sugisaki M (1997) Auger Electron Spectroscopy Study of Oxidation Behavior of Iron and Chromium in Zr(Fe,Cr)2 Precipitate in Zircaloy-4. J Nucl Sci Technol 34(3):264–268

    Google Scholar 

  • Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    ADS  Google Scholar 

  • Holstein T (2000) Studies of Polaron Motion: Part II. The ‘Small’ Polaron. Ann Phys 281(1):725–773

    ADS  MathSciNet  Google Scholar 

  • Kalinin SV, Spaldin NA (2013) Functional Ion Defects in Transition Metal Oxides. Science 341(6148):858–859

    ADS  Google Scholar 

  • Kalinin SV, Borisevich A, Fong D (2012) Beyond Condensed Matter Physics on the Nanoscale: The Role of Ionic and Electrochemical Phenomena in the Physical Functionalities of Oxide Materials. ACS Nano 6(12):10423–10437

    Google Scholar 

  • Kasamatsu S, Tada T, Watanabe S (2011) Theoretical analysis of space charge layer formation at metal/ionic conductor interfaces. Solid state ion, 183(1):20–25

    Google Scholar 

  • Kofstad P, Ruzicka DJ (1963) On the Defect Structure of ZrO2 and HfO2. J Electrochem Soc 110(3):181–184

    Google Scholar 

  • Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) First-principles study of native point defects in ZnO. Phys Rev B 61(22):15019–15027

    ADS  Google Scholar 

  • Kohn W (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 140(4A):A1133–A1138

    ADS  MathSciNet  Google Scholar 

  • Lankhorst MHR, Bouwmeester HJM, Verweij H (1997) Thermodynamics and Transport of Ionic and Electronic Defects in Crystalline Oxides. J Am Ceram Soc 80(9):2175–2198

    Google Scholar 

  • Lee JH, Selloni A (2014) TiO2/Ferroelectric Heterostructures as Dynamic Polarization-Promoted Catalysts for Photochemical and Electrochemical Oxidation of Water. Phys Rev Lett 112(19):196102

    ADS  Google Scholar 

  • Lu Q, Yildiz B (2016) Voltage-Controlled Topotactic Phase Transition in Thin-Film SrCoOx Monitored by In Situ X-ray Diffraction. Nano Lett 16(2):1186–1193

    ADS  Google Scholar 

  • Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175(1):67–71

    ADS  MATH  Google Scholar 

  • Maier J (2004) Physical chemistry of ionic materials: ions and electrons in solids. John Wiley & Sons, Chichester

    Google Scholar 

  • Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65(3):599–610

    ADS  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta BBA – Rev Bioenerg 811(3):265–322

    Google Scholar 

  • Markowich PA, Ringhofer CA, Schmeiser C (1990) Semiconductor equations. Springer-Verlag, Wien

    Google Scholar 

  • Minh NQ (1993) Ceramic Fuel Cells. J Am Ceram Soc 76(3):563–588

    Google Scholar 

  • Pêcheur D, Lefebvre F, Motta AT, Lemaignan C, Wadier JF (1992) Precipitate evolution in the Zircaloy-4 oxide layer. J Nucl Mater 189(3):318–332

    ADS  Google Scholar 

  • Perdew JP (2013) Climbing the ladder of density functional approximations. MRS Bull 38(9):743–750

    Google Scholar 

  • Polfus JM, Bjørheim TS, Norby T, Bredesen R (2016) Surface defect chemistry of Y-substituted and hydrated BaZrO3 with subsurface space-charge regions. J Mater Chem A 4(19):7437–7444

    Google Scholar 

  • Schmalzried H (1995) Chemical kinetics of solids. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  • Smyth DM (2000) The defect chemistry of metal oxides. Defect chem met oxides DM Smyth, p 304, Foreword DM Smyth. Oxf Univ Press, ISBN-10 0195110145, ISBN-13 9780195110142. p 304

    Google Scholar 

  • Souza RAD (2009) The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3. Phys Chem Chem Phys 11(43):9939–9969

    Google Scholar 

  • Tilley RJ (2008) Defects in solids. John Wiley & Sons, vol. 4

    Google Scholar 

  • Todorova M, Neugebauer J (2014) Extending the Concept of Defect Chemistry from Semiconductor Physics to Electrochemistry. Phys Rev Appl 1(1):014001

    ADS  Google Scholar 

  • Van de Walle CG, Martin RM (1987) Theoretical study of band offsets at semiconductor interfaces. Phys Rev B 35(15):8154?–8165

    ADS  Google Scholar 

  • Voter AF (2007) Introduction to the kinetic monte carlo method. In: Sickafus KE, Kotomin EA, Uberuaga BP (eds) Radiation effects solids. Springer, Netherlands, pp 1–23

    Google Scholar 

  • Wachsman ED, Lee KT (2011) Lowering the Temperature of Solid Oxide Fuel Cells. Science 334(6058):935–939

    ADS  Google Scholar 

  • Wang Z, Bevan KH (2016) Exploring the impact of semicore level electronic relaxation on polaron dynamics: An adiabatic ab initio study of FePO4. Phys Rev B 93(2):024303

    ADS  Google Scholar 

  • Yang J, Youssef M, Yildiz B (2017) Predicting point defect equilibria across oxide hetero-interfaces: model system of ZrO2/Cr2O3. Phys Chem Chem Phys 19(5):3869–3883

    Google Scholar 

  • Yang J, Youssef M, Yildiz B (2018) Oxygen self-diffusion mechanisms in monoclinic Zr2 revealed and quantified by density functional theory, random walk analysis, and kinetic Monte Carlo calculations. Phys Rev B 97(2):024114

    ADS  Google Scholar 

  • Youssef M, Yildiz B (2012) Intrinsic point-defect equilibria in tetragonal ZrO2: Density functional theory analysis with finite-temperature effects. Phys Rev B 86(14):144109

    ADS  Google Scholar 

  • Youssef M, Yildiz B (2014) Predicting self-diffusion in metal oxides from first principles: The case of oxygen in tetragonal ZrO2. Phys Rev B 89(2):024105

    ADS  Google Scholar 

  • Youssef M, Yang M, Yildiz B (2016) Doping in the Valley of Hydrogen Solubility: A Route to Designing Hydrogen-Resistant Zirconium Alloys. Phys Rev Appl 5(1):014008

    ADS  Google Scholar 

  • Youssef M, Van Vliet KJ, Yildiz B (2017a) Polarizing Oxygen Vacancies in Insulating Metal Oxides under a High Electric Field. Phys Rev Lett 119(12):126002

    ADS  Google Scholar 

  • Youssef M, Yildiz B, Vliet KJV (2017b) Thermomechanical stabilization of electron small polarons in \(\mathrm{SrTi}{\mathrm{O}}_{3}\) assessed by the quasiharmonic approximation. Phys Rev B 95(16):161110

    ADS  Google Scholar 

  • Žguns PA, Ruban AV, Skorodumova NV (2017) Ordering and phase separation in Gd-doped ceria: a combined DFT, cluster expansion and Monte Carlo study. Phys Chem Chem Phys 19(39):26606–26620

    Google Scholar 

  • Zhang SB, Wei S-H, Zunger A (2001) Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys Rev B 63(7):075205

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafa Youssef or Bilge Yildiz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Youssef, M., Yang, J., Yildiz, B. (2019). Defect Equilibria and Kinetics in Crystalline Insulating Oxides: Bulk and Hetero-Interfaces. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_57-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_57-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Defect Equilibria and Kinetics in Crystalline Insulating Oxides: Bulk and Hetero-Interfaces
    Published:
    06 March 2019

    DOI: https://doi.org/10.1007/978-3-319-50257-1_57-3

  2. Defect Equilibria and Kinetics in Crystalline Insulating Oxides: Bulk and Hetero-Interfaces
    Published:
    12 December 2018

    DOI: https://doi.org/10.1007/978-3-319-50257-1_57-2

  3. Original

    Defect Equilibria and Kinetics in Crystalline Insulating Oxides: Bulk and Hetero-Interfaces
    Published:
    16 October 2018

    DOI: https://doi.org/10.1007/978-3-319-50257-1_57-1