Skip to main content

DFT-Parameterized Object Kinetic Monte Carlo Simulations of Radiation Damage

  • Living reference work entry
  • First Online:

Abstract

Materials for nuclear applications are subjected to extremely stringent conditions. The incoming energetic particles create different types of defects in the material that modify the system microstructure. These defects diffuse and interact with each other and pre-existing features in the material, leading to alterations of the material properties, and even to failure. To deploy reliable materials for such extreme applications, a deep understanding of the microstructural changes and their relation to material properties is critically required. Synergistic experimental and theoretical studies are paramount to gain such crucial knowledge. In this work we review one theoretical venue developed over the years to first understand and then predict the material response upon irradiation: an object kinetic Monte Carlo (OKMC) approach parameterized to first-principles data. We review the theory behind the kinetic Monte Carlo (KMC) algorithm and the specifics of the OKMC as a mesoscale methodology. We describe density functional theory (DFT) as an ab initio approach that can accurately calculate parameters required by the OKMC as input data to be able to analyze the microstructure evolution of the system. Finally, we show two applications lengthily studied in the literature: the microstructural evolution of both ferritic steels and tungsten under diverse irradiation conditions.

This is a preview of subscription content, log in via an institution.

References

  • Abe H, Kuramoto E (1999) Interaction of solutes with irradiation-induced defects of electron-irradiated dilute iron alloys. J Nucl Mater 271–272:209–213

    Article  ADS  Google Scholar 

  • Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15:553–595

    Article  ADS  Google Scholar 

  • Athènes M, Bulatov VV (2014) Path factorization approach to stochastic simulations. Phys Rev Lett 113(23):230601

    Article  ADS  Google Scholar 

  • Baldwin M, Doerner R (2008) Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions. Nucl Fusion 48(3):035001, 00193

    Article  ADS  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38(6):3098–3100

    Article  ADS  Google Scholar 

  • Becquart C, Domain C (2007) Ab initio calculations about intrinsic point defects and He in W. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 255(1):23–26

    Article  ADS  Google Scholar 

  • Becquart C, Domain C (2009) A density functional theory assessment of the clustering behaviour of He and H in tungsten. J Nucl Mater 386–388:109–111

    Article  ADS  Google Scholar 

  • Becquart CS, Domain C (2010) Modeling microstructure and irradiation effects. Metall Mater Trans A 42A:852

    ADS  Google Scholar 

  • Becquart C, Domain C, Sarkar U, DeBacker A, Hou M (2010) Microstructural evolution of irradiated tungsten: ab initio parameterisation of an OKMC model. J Nucl Mater 403(1–3): 75–88

    Article  ADS  Google Scholar 

  • Becquart CS, Barthe MF, De Backer A (2011) Modelling radiation damage and He production in tungsten. Phys Scripta T145:014048

    Article  ADS  Google Scholar 

  • Bertin N, Upadhyay MV, Pradalier C, Capolungo L (2015) A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics. Model Simul Mater Sci Eng 23(6):065009

    Article  ADS  Google Scholar 

  • Bortz AB, Kalos MH, Lebowitz JL (1975) A new algorithm for Monte Carlo simulation of Ising spin systems. J Comput Phys 17:10–18

    Article  ADS  Google Scholar 

  • Castin N, Bakaev A, Bonny G, Sand A, Malerba L, Terentyev D (2017) On the onset of void swelling in pure tungsten under neutron irradiation: an object kinetic Monte Carlo approach. J Nucl Mater 493:280–293

    Article  ADS  Google Scholar 

  • Castin N, Bonny G, Bakaev A, Ortiz C, Sand A, Terentyev D (2018) Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: impact of transmutation and carbon impurities. J Nucl Mater 500:15–25

    Article  ADS  Google Scholar 

  • Caturla MJ, Soneda N, Alonso E, Wirth BD, de la Rubia TD, Perlado JM (2000) Comparative study of radiation damage accumulation in Cu and Fe. J Nucl Mater 276:13

    Article  ADS  Google Scholar 

  • Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45(7):4

    Article  Google Scholar 

  • Chatterjee A, Vlachos DG (2007) An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J Comput-Aided Mater Des 14(2):253–308

    Article  ADS  Google Scholar 

  • Correa AA, Kohanoff J, Artacho E, Sánchez-Portal D, Caro A (2012) Nonadiabatic forces in ion-solid interactions: the initial stages of radiation damage. Phys Rev Lett 108(21):213201

    Article  ADS  Google Scholar 

  • Dai Y, Victoria M (1997) Defect cluster structure and tensile properties of copper single crystals irradiated with 600 MeV protons. MRS Proc 439:319–324

    Article  Google Scholar 

  • De Backer A, Sand A, Ortiz CJ, Domain C, Olsson P, Berthod E, Becquart CS (2016) Primary damage in tungsten using the binary collision approximation, molecular dynamic simulations and the density functional theory. Phys Scripta T167:014018

    Article  ADS  Google Scholar 

  • Domain C, Becquart CS, Malerba L (2004) Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J Nucl Mater 335:121

    Article  ADS  Google Scholar 

  • Draeger EW, Andrade X, Gunnels JA, Bhatele A, Schleife A, Correa AA (2017) Massively parallel first-principles simulation of electron dynamics in materials. J Parallel Distrib Comput 106: 205–214

    Article  Google Scholar 

  • Elcock EW (1959) Vacancy diffusion in ordered alloys. Proc Phys Soc 73:250

    Article  ADS  Google Scholar 

  • Elcock EW, McCombie CW (1957) Vacancy diffusion in binary ordered alloys. Phys Rev Lett Editor 109:605

    Google Scholar 

  • El-Mellouhi F, Mousseau N, Lewis LJ (2008) Kinetic activation-relaxation technique: an off-lattice self-learning kinetic Monte Carlo algorithm. Phys Rev B 78:153202

    Article  ADS  Google Scholar 

  • Eyring H, Walter J, Kimball GE (1944) Quantum chemistry, 1st edn. Wiley, New York

    Google Scholar 

  • Feibelman PJ (1990) Diffusion path for an Al adatom on Al(001). Phys Rev Lett 65(6):729–732

    Article  ADS  Google Scholar 

  • Fernandez N, Ferro Y, Kato D (2015) Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models. Acta Mater 94:307–318

    Article  Google Scholar 

  • Fichthorn KA, Lin Y (2013) A local superbasin kinetic Monte Carlo method. J Chem Phys 138(16):164104

    Article  ADS  Google Scholar 

  • Fu CC, Dalla Torre J, Willaime F, Bocquet J-L, Barbu A (2005) Multiscale modelling of defect kinetics in irradiated iron. Nature Mater 4:68

    Article  ADS  Google Scholar 

  • Gámez L, Gámez B, Caturla MJ, Terentyev D, Perlado JM (2011) Object Kinetic Monte Carlo calculations of irradiated Fe-Cr dilute alloys: the effect of the interaction radius between substitutional Cr and self-interstitial Fe. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 269(14):1684–1688

    Article  ADS  Google Scholar 

  • Gharaee L, Marian J, Erhart P (2016) The role of interstitial binding in radiation induced segregation in W-Re alloys. J Appl Phys 120(2):025901

    Article  ADS  Google Scholar 

  • Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104(9):1876–1889

    Article  Google Scholar 

  • Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  ADS  MathSciNet  Google Scholar 

  • Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  Google Scholar 

  • Gilmer GH, Bennema P (1972) Simulation of crystal growth with surface diffusion. J Appl Phys 43(4):1347–1360

    Article  ADS  Google Scholar 

  • Glensk A, Grabowski B, Hickel T, Neugebauer J (2015) Understanding anharmonicity in FCC materials: from its origin to ab initio strategies beyond the quasiharmonic approximation. Phys Rev Lett 114(19):195901

    Article  ADS  Google Scholar 

  • Grabowski B, Hickel T, Neugebauer J (2007) Ab initio study of the thermodynamic properties of nonmagnetic elementary FCC metals: exchange-correlation-related error bars and chemical trends. Phys Rev B 76(2)

    Google Scholar 

  • Grabowski B, Hickel T, Neugebauer J (2011) Formation energies of point defects at finite temperatures. Phys Status Solidi B 248(6):1295–1308, 00049. https://doi.org/10.1002/pssb.201046302

    Article  ADS  Google Scholar 

  • Hanusse P, Blanche A (1981) A Monte Carlo method for large reaction diffusion systems. J Chem Phys 74:6148

    Article  ADS  Google Scholar 

  • Heinisch HL (1990) Computer simulation of high energy displacement cascades. Radiat Eff Defects Solids 113:53

    Article  Google Scholar 

  • Henkelman G, Jonsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022, 01295

    Article  ADS  Google Scholar 

  • Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22) 9978–9985

    Article  ADS  Google Scholar 

  • Henkelman G, Jonsson H (2001) Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys 115(21):9657

    Article  ADS  Google Scholar 

  • Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  ADS  Google Scholar 

  • Henriksson KOE, Nordlund K, Krasheninnikov A, Keinonen J (2005) Difference in formation of hydrogen and helium clusters in tungsten. Appl Phys Lett 87(16):163113

    Article  ADS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogenous electron gas. Phys Rev B 136:864–B871

    Article  ADS  Google Scholar 

  • Huang G-Y, Juslin N, Wirth BD (2016) First-principles study of vacancy, interstitial, noble gas atom interstitial and vacancy clusters in BCC-W. Comput Mater Sci 123:121–130

    Article  Google Scholar 

  • Huang CH, Gharaee L, Zhao Y, Erhart P, Marian J (2017) Mechanism of nucleation and incipient growth of Re clusters in irradiated W-Re alloys from kinetic Monte Carlo simulations. Phys Rev B 96:094108

    Article  ADS  Google Scholar 

  • Huang CH, Gilbert MR, Marian J (2018) Simulating irradiation hardening in tungsten under fast neutron irradiation including Re production by transmutation. J Nucl Mat 499:204–215

    Article  ADS  Google Scholar 

  • Hudson TS, Dudarev SL, Caturla MJ, Sutton AP (2005) Effects of elastic interactions on post-cascade radiation damage evolution in kinetic monte carlo simulations. Philos Mag 85:661–675

    Article  ADS  Google Scholar 

  • Hunter A, Saied F, Le C, Koslowski M (2011) Large-scale 3D phase field dislocation dynamics simulations on high-performance architectures. Int J High Perform Comput Appl 25(2): 223–235, 00026

    Article  Google Scholar 

  • Jiménez F, Ortiz C (2016) A GPU-based parallel object kinetic monte carlo algorithm for the evolution of defects in irradiated materials. Comput Mater Sci 113:178–186

    Article  Google Scholar 

  • Kampen NGV (1992) Stochastic processes in physics and chemistry, 2nd edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133

    Article  ADS  MathSciNet  Google Scholar 

  • Körmann F, Dick A, Grabowski B, Hallstedt B, Hickel T, Neugebauer J (2008) Free energy of bcc iron: integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Phys Rev B 78(3):033102

    Article  ADS  Google Scholar 

  • Langreth DC, Mehl MJ (1983) Beyond the local-density approximation in calculations of ground-state electronic properties. Phys Rev B 28(4):1809–1834

    Article  ADS  Google Scholar 

  • Lasa A, Tahtinen SK, Nordlund K (2014) Loop punching and bubble rupture causing surface roughening A model for W fuzz growth. EPL (Europhys Lett) 105(2):25002, 00010

    Article  ADS  Google Scholar 

  • Lu G-H, Zhou H-B, Becquart CS (2014) A review of modelling and simulation of hydrogen behaviour in tungsten at different scales. Nucl Fusion 54(8):086001

    Article  ADS  Google Scholar 

  • Malerba L, Caro A, Wallenius J (2008) Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys. J Nucl Mater 382:112–125

    Article  ADS  Google Scholar 

  • Martin-Bragado I, Tian S, Johnson M, Castrillo P, Pinacho R, Rubio J, Jaraiz M (2006) Modeling charged defects, dopant diffusion and activation mechanisms for TCAD simulations using kinetic Monte Carlo. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 253(1–2):63–67

    Article  ADS  Google Scholar 

  • Martin-Bragado I, Rivera A, Valles G, Gomez-Selles JL, Caturla MJ (2013) MMonCa: an object kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion. Comput Phys Commun 184(12):2703–2710, 00037

    Article  ADS  Google Scholar 

  • Martinez E, Uberuaga BP (2015) Mobility and coalescence of stacking fault tetrahedra in cu. Sci Rep 5:9084

    Article  ADS  Google Scholar 

  • Martínez E, Marian J, Kalos M, Perlado J (2008) Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. J Comput Phys 227(8):3804–3823, 00032

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Martínez E, Monasterio PR, Marian J (2011) Billion-atom synchronous parallel kinetic monte carlo simulations of critical 3D Ising systems. J Comp Phys 230:1359–1369

    Article  ADS  MATH  Google Scholar 

  • Mason DR, Yi X, Kirk MA, Dudarev SL (2014) Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils. J Phys Condens Matter 26(37):375701

    Article  Google Scholar 

  • Maury F, Lucasson P, Lucasson A, Faudot F, Bigot J (1987) A study of irradiated FeCr alloys: deviations from Matthiessen’s rule and interstitial migration. J Phys F Metal Phys 17(5): 1143–1165

    Article  ADS  Google Scholar 

  • Nguyen-Manh D, Dudarev S (2006) Multi-scale modelling of defect behavior in BCC transition metals and iron alloys for future fusion power plants. Mater Sci Eng A 423(1–2):74–78

    Article  Google Scholar 

  • Niklasson A, Tymczak C, Challacombe M (2006) Time-reversible born-oppenheimer molecular dynamics. Phys Rev Lett 97(12):123001

    Article  ADS  Google Scholar 

  • Novotny MA (1995) Monte Carlo algorithms with absorbing Markov chains: fast local algorithms for slow dynamics. Phys Rev Lett 74(1):1

    Article  ADS  Google Scholar 

  • Oda T, Zhu D, Watanabe Y (2015) Kinetic Monte Carlo simulation on influence of vacancy on hydrogen diffusivity in tungsten. J Nucl Mater 467:439–447

    Article  ADS  Google Scholar 

  • Ohsawa K, Goto J, Yamakami M, Yamaguchi M, Yagi M (2010) Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles. Phys Rev B 82(18):184117

    Article  ADS  Google Scholar 

  • Olsson P (2009) Ab initio study of interstitial migration in Fe-Cr alloys. J Nucl Mater 386–388: 86–89

    Article  ADS  Google Scholar 

  • Olsson P, Domain C, Wallenius J (2007) Ab initio study of Cr interactions with point defects in bcc Fe. Phys Rev B 75:014110

    Article  ADS  Google Scholar 

  • Olsson P, Becquart CS, Domain C (2016) Ab initio threshold displacement energies in iron. Mater Res Lett 4(4):219–225

    Article  Google Scholar 

  • Opplestrup T, Bulatov V, Gilmer G, Kalos M, Sadigh B (2006) First-passage Monte Carlo algorithm: diffusion without all the Hops. Phys Rev Lett 97(23):230602

    Article  ADS  Google Scholar 

  • Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687

    Article  ADS  Google Scholar 

  • Perini A, Jacucci G, Martin G (1984) Cluster free energy in the simple-cubic Ising model. Phys Rev B 29(5):2689–2697

    Article  ADS  Google Scholar 

  • Schulze TP (2002) Kinetic Monte Carlo simulations with minimal searching. Phys Rev E 65(3):036704

    Article  ADS  Google Scholar 

  • Shim Y, Amar J (2005a) Rigorous synchronous relaxation algorithm for parallel kinetic Monte Carlo simulations of thin film growth. Phys Rev B 71(11):115436

    Article  ADS  Google Scholar 

  • Shim Y, Amar JG (2005b) Semirigorous synchronous sublattice algorithm for parallel kinetic monte carlo simulations of thin film growth. Phys Rev B 71:125432

    Article  ADS  Google Scholar 

  • Sholl DS, Steckel JA (2009) Density functional theory a practical introduction. Wiley, Hoboken

    Book  Google Scholar 

  • Slepoy A, Thompson AP, Plimpton SJ (2008) A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J Chem Phys 128(20):205101

    Article  ADS  Google Scholar 

  • Söderlind P, Yang LH, Moriarty JA, Wills JM (2000) First-principles formation energies of monovacancies in BCC transition metals. Phys Rev B 61(4):2579–2586

    Article  ADS  Google Scholar 

  • Sørensen MR, Voter AF (2000) Temperature-accelerated dynamics for simulation of infrequent events. J Chem Phys 112(21):9599–9606

    Article  ADS  Google Scholar 

  • Subramanian G, Perez D, Uberuaga BP, Tomé CN, Voter AF (2013) Method to account for arbitrary strains in kinetic Monte Carlo simulations. Phys Rev B 87(14):144107

    Article  ADS  Google Scholar 

  • Suzudo T, Yamaguchi M, Hasegawa A (2014) Stability and mobility of rhenium and osmium in tungsten: first principles study. Model Simul Mater Sci Eng 22(7):075006

    Article  ADS  Google Scholar 

  • Takaki S, Fuss J (1983) Dedek HKU, Schultz H. The resistivity recovery of high purity and carbon doped iron following low electron irradiation. Rad Eff 79:87–122

    Article  Google Scholar 

  • Trushin O, Karim A, Kara A, Rahman TS (2005) Self-learning kinetic Monte Carlo method: application to Cu(111). Phys Rev B 72:115401

    Article  ADS  Google Scholar 

  • Uberuaga BP, Hoagland RG, Voter AF, Valone SM (2007) Direct Transformation of Vacancy Voids to Stacking Fault Tetrahedra. Phys Rev Lett 99:135501

    Article  ADS  Google Scholar 

  • Uberuaga BP, Martínez E, Perez D, Voter AF (2018) Discovering mechanisms relevant for radiation damage evolution. Comput Mater Sci 147:282–292

    Article  Google Scholar 

  • Valles G, González C, Martin-Bragado I, Iglesias R, Perlado J, Rivera A (2015a) The influence of high grain boundary density on helium retention in tungsten. J Nucl Mater 457:80–87

    Article  ADS  Google Scholar 

  • Valles G, Cazalilla AL, Gonzalez C, Martin-Bragado I, Prada A, Iglesias R, Perlado J, Rivera A (2015b) A multiscale approach to defect evolution in tungsten under helium irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 352:100–103

    Article  ADS  Google Scholar 

  • Valles G, Panizo-Laiz M, González C, Martin-Bragado I, González-Arrabal R, Gordillo N, Iglesias R, Guerrero C, Perlado J, Rivera A (2017a) Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten. Acta Mater 122:277–286

    Article  Google Scholar 

  • Valles G, Martin-Bragado I, Nordlund K, Lasa A, Björkas C, Safi E, Perlado J, Rivera A (2017b) Temperature dependence of underdense nanostructure formation in tungsten under helium irradiation. J Nucl Mater 490:108–114

    Article  ADS  Google Scholar 

  • Vattré A, Jourdan T, Ding H, Marinica M-C, Demkowicz MJ (2016) Non-random walk diffusion enhances the sink strength of semicoherent interfaces. Nat Commun 7:10424

    Article  ADS  Google Scholar 

  • Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3(1–2):121–127

    Article  ADS  Google Scholar 

  • Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78(20):3908

    Article  ADS  Google Scholar 

  • Voter AF (1998) Parallel replica method for dynamics of infrequent events. Phys Rev B 57(22):R13985

    Article  ADS  Google Scholar 

  • Voter AF (2007) Introduction to the kinetic Monte Carlo method, Ch. 1. Springer, Dordrecht

    Google Scholar 

  • Voter AF, Doll JD (1984) Transition state theory description of surface self-diffusion: comparison with classical trajectory results. J Chem Phys 80:5832

    Article  ADS  Google Scholar 

  • Voter AF, Doll JD (1985) Dynamical corrections to transition state theory for multistate systems: surface self-diffusion in the rare-event regime. J Chem Phys 82:80–92

    Article  ADS  Google Scholar 

  • Was GS (2007) Fundamentals of radiation materials science. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Wen M, Takahashi A, Ghoniem NM (2009) Kinetics of self-interstitial cluster aggregation near dislocations and their influence on hardening. J Nucl Mater 392:386–395

    Article  ADS  Google Scholar 

  • Witt WC, del Rio BG, Dieterich JM, Carter EA (2018) Orbital-free density functional theory for materials research. J Mater Res 33:1–19

    Article  Google Scholar 

  • Xu L, Henkelman G (2008) Adaptive kinetic monte carlo for first-principles accelerated dynamics. J Chem Phys 129:114104

    Article  ADS  Google Scholar 

  • Xu D, Wirth BD, Li M, Kirk MA (2012) Defect microstructural evolution in ion irradiated metallic nanofoils: kinetic Monte Carlo simulation versus cluster dynamics modeling and in situ transmission electron microscopy experiments. Appl Phys Lett 101(10):101905, 00009

    Article  ADS  Google Scholar 

  • Young WM, Elcock EW (1966) Monte carlo studies of vacancy migration in binary ordered alloys: I. Proc Phys Soc 89:735

    Article  ADS  Google Scholar 

  • Zhang J, Zhang H, Ye H, Zheng Y (2016) Free-end adaptive nudged elastic band method for locating transition states in minimum energy path calculation. J Chem Phys 145(9):094104

    Article  ADS  Google Scholar 

  • Zhu T, Li J, Samanta A, Kim HG, Suresh S (2007) Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Natl Acad Sci 104(9):3031–3036

    Article  ADS  Google Scholar 

  • Zinkle SJ, Farrell K (1989) Void swelling and defect cluster formation in reactor-irradiated copper. J Nucl Mater 168:262–267

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Malvin H. Kalos, Alfredo Caro, Frédéric Soisson, Vasily Bulatov, Blas Uberuaga, Arthur F. Voter, and Danny Perez for many useful discussions. E.M. wants to thank Gustavo Esteban for useful comments on the manuscript. E.M. acknowledges the support of the U.S. DOE, Office of Science, Advanced Scientific Computing Research and Fusion Energy Sciences through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions for this work. This research used resources provided by the LANL Institutional Computing Program. LANL, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Martínez .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Martínez, E., Caturla, M.J., Marian, J. (2018). DFT-Parameterized Object Kinetic Monte Carlo Simulations of Radiation Damage. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_137-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_137-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics