Skip to main content

Machine Learning and High-Throughput Approaches to Magnetism

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Magnetic materials have underpinned human civilization for at least one millennium and now find applications in the most diverse technologies, ranging from data storage, to energy production and delivery, to sensing. Such great diversity, associated to the fact that only a limited number of elements can sustain a magnetic order, makes magnetism rare and fascinating. The discovery of a new high-performance magnet is often a complex process, where serendipity plays an important role. Here we present a range of novel approaches to the discovery and design of new magnetic materials, which is rooted in high-throughput electronic structure theory and machine learning models. Such combination of methods has already demonstrated the ability of discovering ferromagnets with high Curie temperature at an unprecedented speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Archer T, Pemmaraju C, Sanvito S, Franchini C, He J, Filippetti A, Delugas P, Puggioni D, Fiorentini V, Tiwari R, Majumdar P (2011) Exchange interactions and magnetic phases of transition metal oxides: benchmarking advanced ab initio methods. Phys Rev B 84:115114

    Article  ADS  Google Scholar 

  • Bloński P, Hafner J (2009) Density-functional theory of the magnetic anisotropy of nanostructures: an assessment of different approximations. J Phys Condens Matter 21:426001

    Article  ADS  Google Scholar 

  • Calderon C, Plata J, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl M, Hart G, Nardelli M, Curtarolo S (2015) The AFLOW standard for high-throughput materials science calculations diagrams. Comput Mat Sci 108:233–238

    Article  Google Scholar 

  • Carrete J, Li W, Mingo N, Wang S, Curtarolo S (2014) Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys Rev X 4:011019

    Google Scholar 

  • Castelliz L (1955) Beitrag zum ferromagnetismus von legierungen der ubergangsmetalle mit elementen der b-gruppe. Z Metallk 46:198–203

    Google Scholar 

  • Coey J (2009) Magnetism and magnetic materials. Oxford University Press, Oxford

    Google Scholar 

  • Coey J, Sanvito S (2004) Magnetic semiconductors and half-metals. J Phys D Appl Phys 37: 988–993

    Article  ADS  Google Scholar 

  • Curtarolo S, Setyawan W, Hart G, Jahnatek M, Chepulskii R, Taylor R, Wang S, Xue J, Yang K, Levy O, Mehl M, Morgan D (2012a) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mat Sci 58:218–226

    Article  Google Scholar 

  • Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor R, Nelson L, Hart G, Sanvito S, Nardelli M, Mingo N, Levy O (2012b) AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mat Sci 58:227–235

    Article  Google Scholar 

  • Curtarolo S, Hart G, Nardelli M, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12:191–201

    Article  ADS  Google Scholar 

  • Dam HC, Nguyen VC, Pham TL, Nguyen AT, Kino H, Terakura K, Miyake T (2017) A regression-based feature selection study of the curie temperature of transition-metal rare-earth compounds: prediction and understanding. arXiV:cond-mat

    Google Scholar 

  • d’Avezac M, Luo JW, Chanier T, Zunger A (2012) Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys Rev Lett 108:027401

    Article  ADS  Google Scholar 

  • Dunn TM (1961) Spin-orbit coupling in the first and second transition series. Trans Farad Soc 57:1441

    Article  Google Scholar 

  • Faleev SV, Ferrante Y, Jeong J, Samant MG, Jones B, Parkin SS (2017) Origin of the tetragonal ground state of Heusler compounds. Phys Rev Appl 7:034022

    Article  ADS  Google Scholar 

  • Franchini C, Archer T, He J, Chen XQ, Filippetti A, Sanvito S (2011) Exceptionally strong magnetism in the 4d perovskites RTcO3 (R = Ca, Sr, Ba). Phys Rev B 83:220402

    Google Scholar 

  • Ghiringhelli L, Vybiral J, Levchenko S, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114:105503

    Article  ADS  Google Scholar 

  • Ghiringhelli L, Carbogno C, Levchenko S, Mohamed F, Huhs G, Lueders M, Oliveira M, Scheffler M (2017) Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats. NPJ Comput Mater 3:46

    Article  ADS  Google Scholar 

  • Graf T, Felser C, Parkin S (2011) Simple rules for the understanding of Heusler compounds. Prog Solid State Chem 39:1–50

    Article  Google Scholar 

  • Grazulis S, Chateigner D, Downs RT, Yokochi AT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database – an open-access collection of crystal structures. J Appl Crystallogr 42:726–729

    Article  Google Scholar 

  • Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Snchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2(17):2241–2251

    Article  Google Scholar 

  • Hart G, Curtarolo S, Massalski T, Levy O (2013) Comprehensive search for new phases and compounds in binary alloy systems based on platinum-group metals, using a computational first-principles approach. Phys Rev X 3:041035

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2013) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    MATH  Google Scholar 

  • ICSD (2018) FIZ Karlsruhe and NIST, inorganic crystal structure database. http://icsdfiz-karlsruhede/icsd/

  • Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A (2017) Universal fragment descriptors for predicting properties of inorganic crystals. Nat Comm 8:15679

    Article  ADS  Google Scholar 

  • Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1(1):011002

    Article  ADS  Google Scholar 

  • Janak J (1977) Uniform susceptibilities of metallic elements. Phys Rev B 16:255–262

    Article  ADS  Google Scholar 

  • Kanomata T, Shirakawa K, Kaneko T (1987) Effect of hydrostatic pressure on the curie temperature of the Heusler alloys Ni2MnZ (Z = Al, Ga, In, Sn and Sb). J Magn Magn Mater 65:76

    Article  ADS  Google Scholar 

  • Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C (2015) The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput Mat 1:15010

    Google Scholar 

  • Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  • Kusne AG, Gao T, Mehta A, Ke L, Nguyen MC, Ho KM, Antropov V, Wang CZ, Kramer MJ, Long C, Takeuchi I (2014) On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci Rep 4:6367

    Article  Google Scholar 

  • Lukas H, Fries S, Sundman B (2007) Computational thermodynamics, the Calphad method. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Magda G, Jin X, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L, Tapasztó L (2014) Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514:608–611

    Article  ADS  Google Scholar 

  • Mazin I (1999) How to define and calculate the degree of spin polarization in ferromagnets. Phys Rev Lett 83:1427–1430

    Article  ADS  Google Scholar 

  • Moruzzi VL, Marcus PM (1989) Magnetism in FCC rhodium and palladium. Phys Rev B 39: 471–474

    Article  ADS  Google Scholar 

  • Oganov A, Glass C (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124:244704

    Article  ADS  Google Scholar 

  • Oliynyk AO, Mar A (2018) Discovery of intermetallic compounds from traditional to machine- learning approaches. Acc Chem Res 51:59–68

    Article  Google Scholar 

  • Oswald A, Zeller R, Braspenning P, Dederichs P (1985) Interaction of magnetic impurities in Cu and Ag. J Phys F 15:193

    Article  ADS  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825

    MathSciNet  MATH  Google Scholar 

  • Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  ADS  Google Scholar 

  • Pickard CJ, Needs R (2011) Ab initio random structure searching. J Phys Condens Matter 23:053201

    Article  ADS  Google Scholar 

  • Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) Aiida: automated interactive infrastructure and database for computational science. Comput Mat Sci 111:218–230

    Article  Google Scholar 

  • Rasmussen FA, Thygesen KS (2015) Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J Phys Chem C 119(23):13169–13183

    Article  Google Scholar 

  • Requist R, Baruselli P, Smogunov A, Fabrizio M, Modesti S, Tosatti E (2016) Metallic, magnetic and molecular nanocontacts. Nat Nanotech 11:499–508

    Article  ADS  Google Scholar 

  • Rode K, Baadji N, Betto D, Lau YC, Kurt H, Venkatesan M, Stamenov P, Sanvito S, Coey J, Fonda E, Otero E, Choueikani F, Ohresser P, Porcher F, André G (2013) Site-specific order and magnetism in tetragonal Mn3Ga thin films. Phys Rev B 87:184429

    Article  ADS  Google Scholar 

  • Rodriguez E, Poineau F, Llobet A, Kennedy B, Avdeev M, Thorogood G, Carter M, Seshadri R, Singh D, Cheetham A (2011) High temperature magnetic ordering in the 4d perovskite SrTcO3. Phys Rev Lett 106:067201

    Article  ADS  Google Scholar 

  • Sandratskii L (1986) Energy band structure calculations for crystals with spiral magnetic structure. Phys Status Solidi B 136:167

    Article  ADS  Google Scholar 

  • Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M, Curtarolo S (2017) Accelerated discovery of new magnets in the Heusler alloy family. Sci Adv 3:e1602241

    Article  ADS  Google Scholar 

  • Savrasov S (1998) Linear response calculations of spin fluctuations. Phys Rev Lett 81:2570–2573

    Article  ADS  Google Scholar 

  • Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Toher C, Plata J, Levy O, de Jong M, Asta M, Nardelli MB, Curtarolo S (2014) High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasi-harmonic Debye model. Phys Rev B 90:174107

    Article  ADS  Google Scholar 

  • Toher C, Oses C, Hicks D, Gossett E, Rose F, Nath P, Usanmaz D, Perim DCFE, Calderon CE, JPlata J, Lederer Y, MichalJahnátek, Setyawan W, Wang S, Xue J, Chepulskii KRRV, Taylor RH, Gomez G, Shi H, Supka AR, Orabi RARA, Gopal P, Cerasoli FT, Liyanage L, Wang H, Siloi I, Agapito LA, Nyshadham C, Hart GLW, Carrete J, Legrain F, Mingo N, Zurek E, Isayev O, Tropsha A, Sanvito S, Hanson RM, Takeuchi I, Mehl MJ, Kolmogorov AN, Yang K, D’Amico P, Calzolari A, Costa M, Gennaro RD, Nardelli MB, Fornari M, Levy O, Curtarolo S (2018) The AFLOW fleet for materials discovery. In: Handbook of materials modeling. Methods: theory and modeling, vol 1. Springer

    Google Scholar 

  • Žic M (2017) Towards data-driven magnetic materials discovery. Ph.D Thesis, Trinity College Dublin

    Google Scholar 

  • Žic M, Archer T, Sanvito S (2017) Designing magnetism in Fe-based Heusler alloys: a machine learning approach. arXiv p 1706.01840

    Google Scholar 

  • Wadley P, Novák V, Campion R, Rinaldi C, Martí X, Reichlová H, Železný J, Gazquez J, Roldan M, Varela M, Khalyavin D, Langridge S, Kriegner D, Máca F, Mašek J, Bertacco R, Holý V, Rushforth A, Edmonds K, Gallagher B, Foxon C, Wunderlich J, Jungwirth T (2013) Tetragonal phase of epitaxial room-temperature antiferromagnet cumnas. Nat Commun 4:2322

    Article  ADS  Google Scholar 

  • Wohlfarth EP (1980) Ferromagnetic materials: a handbook on the properties of magnetically ordered substances. Elsevier, New York

    Google Scholar 

  • Yan F, Zhang X, Yu Y, Yu L, Nagaraja A, Mason T, Zunger A (2015) Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements. Nat Commun 6:7308

    Article  ADS  Google Scholar 

  • Yang K, Setyawan W, Wang S, Nardelli MB, Curtarolo S (2012) A search model for topological insulators with high-throughput robustness descriptors. Nat Mater 11:614–619

    Article  ADS  Google Scholar 

  • Yang K, Oses C, Curtarolo S (2016) Modeling off-stoichiometry materials with a high-throughput ab-initio approach. Chem Mater 28:6484–6492

    Article  Google Scholar 

  • Yong J, Jiang Y, Usanmaz D, Curtarolo S, Zhang X, Shin J, Li L, Pan X, Tachuchi I, Greene R (2014) Composition-spread growth and the robust topological surface state of Kondo insulator SmB6 thin films. Appl Phys Lett 105:222403

    Article  ADS  Google Scholar 

  • Yu L, Zunger A (2012) Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys Rev Lett 108:068701

    Article  ADS  Google Scholar 

  • Ziebeckt K, Webster P (1975) Helical magnetic order in Ni2MnAl. J Phys F Met Phys 5:1756–1766

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Science Foundation Ireland (Grants No. 14/IA/2624). JN thank the Irish Research Council for financial support. SC and CO acknowledge support by DOD-ONR (N00014-13-1-0635, N00014-15-1-2863, N00014-16-1-2326) and the consortium AFLOW.org – Duke University – for computational assistance. SC acknowledges the Alexander von Humboldt Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sanvito .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sanvito, S., Žic, M., Nelson, J., Archer, T., Oses, C., Curtarolo, S. (2018). Machine Learning and High-Throughput Approaches to Magnetism. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_108-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_108-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics