Skip to main content

Constitutive Modeling in Metallic Glasses for Predictions and Designs

  • Living reference work entry
  • First Online:
Book cover Handbook of Materials Modeling
  • 284 Accesses

Abstract

Metallic glasses, made of metallic elements yet possessing an amorphous structure, have attracted considerable interest due to their unique mechanical properties and excellent net-shape forming ability. In terms of mechanical properties, they are extraordinary in elastic limit and strength but inferior in ductility at room temperature, where the inhomogeneous deformation characteristics of shear banding, flow serration, and sometimes cavitation prevail. The net-shape forming ability surfaces when the temperature rises above Tg (i.e., the glass transition temperature), where metallic glasses deform in a homogeneous manner. Understanding both the homogeneous and inhomogeneous deformation in metallic glasses is pivotal for promoting their potential applications. In this course, the continuum mechanics constitutive modeling has played a critical role. The constitutive modeling can be used for either predicting the mechanical responses of metallic glasses under various loading conditions or guiding material, product, and process designs. In this chapter, a number of important constitutive models for metallic glasses are reviewed; their applications in predicting both the homogeneous and inhomogeneous plastic flows are presented; and finally, the attempts of using the constitutive modeling to assist the design of ductility and net-shape forming processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abaqus manual (Version 6.13-2) (2013) Dassault Systémes Simulia Corp, Providence

    Google Scholar 

  • An ZN, Li WD, Liu FX, Liaw PK, Gao YF (2012) Interface constraints on shear band patterns in bonded metallic glass films under microindentation. Metall Mater Trans A 43:2729–2741

    Article  Google Scholar 

  • Anand L, Su C (2005) A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J Mech Phys Solids 53:1362–1396

    Article  ADS  MathSciNet  Google Scholar 

  • Anand L, Su C (2007) A constitutive theory for metallic glasses at high homologous temperatures. Acta Mater 55:3735–3747

    Article  Google Scholar 

  • Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27:47–58

    Article  Google Scholar 

  • Ashby MF (2005) Materials selection in mechanical design, 3rd edn. Butterworth-Heinemann, Burlington

    Google Scholar 

  • Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer, 6th edn. Wiley, Danvers

    Google Scholar 

  • Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Raton

    Book  Google Scholar 

  • Chen HM, Huang JC, Song SX, Nieh TG, Jang JSC (2009) Flow serration and shear-band propagation in bulk metallic glasses. Appl Phys Lett 94:141914

    Article  ADS  Google Scholar 

  • Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169

    Article  ADS  Google Scholar 

  • De Hey P, Sietsma J, van den Beukel A (1998) Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation. Acta Mater 46:5873–5882

    Article  Google Scholar 

  • Dieter GE, Bacon DJ (1986) Mechanical metallurgy. McGraw-Hill, New York

    Google Scholar 

  • Dubach A, Dalla Torre FH, Löffler JF (2009) Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Mater 57:881–892

    Article  Google Scholar 

  • Dunne F, Petrinic N (2005) Introduction to computational plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Ekambaram R, Thamburaja P, Yang H, Li Y, Nikabdullah N (2010) The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures. Int J Solids Struct 47:678–690

    Article  Google Scholar 

  • Ekambaram R, Thamburaja P, Nikabdullah R (2011) Shear localization and damage in metallic glasses at high homologous temperatures. Int J Struct Changes Solids 1:15–29

    Google Scholar 

  • Flores KM, Suh D, Dauskardt RH, Asoka-Kumar P, Sterne PA, Howell RH (2011) Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy. J Mater Res 17:1153–1161

    Article  ADS  Google Scholar 

  • Gao YF (2006) An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model. Model Simul Mater Sci Eng 14:1329

    Article  ADS  Google Scholar 

  • Gao YF, Yang B, Nieh TG (2007) Thermomechanical instability analysis of inhomogeneous deformation in amorphous alloys. Acta Mater 55:2319–2327

    Article  Google Scholar 

  • Gao YF, Wang L, Bei H, Nieh TG (2011) On the shear-band direction in metallic glasses. Acta Mater 59:4159–4167

    Article  Google Scholar 

  • Greer AL, Cheng YQ, Ma E (2013) Shear bands in metallic glasses. Mater Sci Eng R 74:71–132

    Article  Google Scholar 

  • Guan P, Lu S, Spector MJB, Valavala PK, Falk ML (2013) Cavitation in amorphous solids. Phys Re Lett 110:185502

    Article  ADS  Google Scholar 

  • Henann D, Anand L (2008) A constitutive theory for the mechanical response of amorphous metals at high temperatures spanning the glass transition temperature: application to microscale thermoplastic forming. Acta Mater 56:3290–3305

    Article  Google Scholar 

  • Henann DL, Anand L (2009) Fracture of metallic glasses at notches: effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness. Acta Mater 57:6057–6074

    Article  Google Scholar 

  • Huang R, Suo Z, Prevost JH, Nix WD (2002) Inhomogeneous deformation in metallic glasses. J Mech Phys Solids 50:1011–1027

    Article  ADS  Google Scholar 

  • Ichitsubo T, Matsubara E, Kai S, Hirao M (2004) Ultrasound-induced crystallization around the glass transition temperature for Pd40Ni40P20 metallic glass. Acta Mater 52:423–429

    Article  Google Scholar 

  • Inoue A, Zhang T, Masumoto T (1989) Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater Trans, JIM 30:965–972

    Article  Google Scholar 

  • Inoue A, Zhang T, Masumoto T (1990) Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater Trans, JIM 31:177–183

    Article  Google Scholar 

  • Inoue A, Kato A, Zhang T, Kim SG, Masumoto T (1991) Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater Trans, JIM 32:609–616

    Article  Google Scholar 

  • Jia HL, Liu FX, An ZN, Li WD, Wang GY, Chu JP, Jand JSC, Gao YF, Liaw PK (2014) Thin-film metallic glasses for substrate fatigue-property improvements. Thin Solid Films 561:2–27

    Article  ADS  Google Scholar 

  • Jia HL, Zheng LL, Li WD, Li N, Qiao JW, Wang GY, Ren Y, Liaw PK, Gao YF (2015) Insights from the lattice-strain evolution on deformation mechanisms in metallic-glass-matrix composites. Metall Mater Trans A 46:2431–2442

    Article  Google Scholar 

  • Jiang Y, Sun L, Wu Q, Qiu K (2017) Enhanced tensile ductility of metallic glass matrix composites with novel microstructure. J Non-Cryst Solids 459:26–31

    Article  ADS  Google Scholar 

  • Klement W, Willens RH, Duwez P (1960) Non-crystalline structure in solidified gold-silicon alloys. Nature 187:869–870

    Article  ADS  Google Scholar 

  • Langer JS (2006) Shear-transformation-zone theory of deformation in metallic glasses. Scripta Mater 54:375–379

    Article  Google Scholar 

  • Lewandowski JJ, Greer AL (2005) Temperature rise at shear bands in metallic glasses. Nat Mater 5:15–18

    Article  ADS  Google Scholar 

  • Li WD, Bei H, Tong Y, Dmowski W, Gao YF (2013) Structural heterogeneity induced plasticity in bulk metallic glasses: from well-relaxed fragile glass to metal-like behavior. Appl Phys Lett 103:171910

    Article  ADS  Google Scholar 

  • Li WD, Gao YF, Bei H (2015) On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses. Sci Rep 5:14786

    Article  ADS  Google Scholar 

  • Li WD, Bei H, Gao YF (2016a) Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses. Intermetallics 79:12–19

    Article  Google Scholar 

  • Li WD, Gao YF, Bei H (2016b) Instability analysis and free volume simulations of shear band directions and arrangements in notched metallic glasses. Sci Rep 6:34878

    Article  ADS  Google Scholar 

  • Li WD, Liaw KP, Gao YF (2016c) Fracture resistance of high entropy alloys: a review. Intermetallics 99:69–83

    Article  Google Scholar 

  • Liu MC, Huang JC, Chen KW, Lin JF, Li WD, Gao YF, Nieh TG (2012) Is the compression of tapered micro- and nanopillar samples a legitimate technique for the identification of deformation mode change in metallic glasses? Scripta Mater 66:817–820

    Article  Google Scholar 

  • Murali P, Guo TF, Zhang YW, Narasimhan R, Li Y, Gao HJ (2011) Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys Rev Lett 107:215501

    Article  ADS  Google Scholar 

  • Pan J, Zhou HF, Wang ZT, Li Y, Gao HJ (2015) Origin of anomalous inverse notch effect in bulk metallic glasses. J Mech Phys Solids 84:85–94

    Article  ADS  Google Scholar 

  • Peker A, Johnson WL (1993) A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett 63:2342–2344

    Article  ADS  Google Scholar 

  • Ruan HH, Zhang LC, Lu J (2011) A new constitutive model for shear banding instability in metallic glass. Int J Solids Struct 48:3112–3127

    Article  Google Scholar 

  • Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23:371–394

    Article  ADS  Google Scholar 

  • Sarac B, Wilmers J, Bargmann S (2014) Property optimization of porous metallic glasses via structural design. Mater Lett 134:306–310

    Article  Google Scholar 

  • Schuh CA, Nieh TG (2003) A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater 51:87–99

    Article  Google Scholar 

  • Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55:4067–4109

    Article  Google Scholar 

  • Singh I, Guo TF, Murali P, Narasimhan R, Zhang YW, Gao HJ (2013) Cavitation in materials with distributed weak zones: implications on the origin of brittle fracture in metallic glasses. J Mech Phys Solids 61:1047–1064

    Article  ADS  MathSciNet  Google Scholar 

  • Singh I, Guo TF, Narasimhan R, Zhang YW (2014) Cavitation in brittle metallic glasses – effects of stress state and distributed weak zones. Int J Solids Struct 51:4373–4385

    Article  Google Scholar 

  • Singh I, Narasimhan R, Ramamurty U (2016) Cavitation-induced fracture causes nanocorrugations in brittle metallic glasses. Phys Rev Lett 117:044302

    Article  ADS  Google Scholar 

  • Slipenyuk A, Eckert J (2004) Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scripta Mater 50:39–44

    Article  Google Scholar 

  • Song SX, Nieh TG (2009) Flow serration and shear-band viscosity during inhomogeneous deformation of a Zr-based bulk metallic glass. Intermetallics 17:762–767

    Article  Google Scholar 

  • Song SX, Wang XL, Nieh TG (2010) Capturing shear band propagation in a Zr-based metallic glass using a high-speed camera. Scripta Mater 62:847–850

    Article  Google Scholar 

  • Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25:407–415

    Article  Google Scholar 

  • Steif PS, Spaepen F, Hutchinson JW (1982) Strain localization in amorphous metals. Acta Metall 30:447–455

    Article  Google Scholar 

  • Su C, Anand L (2006) Plane strain indentation of a Zr-based metallic glass: experiments and numerical simulation. Acta Mater 54:179–189

    Article  Google Scholar 

  • Suryanarayana C, Inoue A (2017) Bulk metallic glasses. CRC Press, Boca Raton

    Google Scholar 

  • Tandaiya P, Narasimhan R, Ramamurty U (2007) Mode I crack tip fields in amorphous materials with application to metallic glasses. Acta Mater 55:6541–6552

    Article  Google Scholar 

  • Tandaiya P, Ramamurty U, Narasimhan R (2009) Mixed mode (I and II) crack tip fields in bulk metallic glasses. J Mech Phys Solids 57:1880–1897

    Article  ADS  Google Scholar 

  • Telford M (2004) The case for bulk metallic glass. Mater Today 7:36–43

    Article  Google Scholar 

  • Thamburaja P, Ekambaram R (2007) Coupled thermo-mechanical modelling of bulk-metallic glasses: theory, finite-element simulations and experimental verification. J Mech Phys Solids 55:1236–1273

    Article  ADS  Google Scholar 

  • Wang G et al (2007) Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys Rev Lett 98:235501

    Article  ADS  Google Scholar 

  • Wang G, Chan KC, Xu XH, Wang WH (2008) Instability of crack propagation in brittle bulk metallic glass. Acta Mater 56:5845–5860

    Article  Google Scholar 

  • Wang L, Bei H, Gao YF, Lu ZP, Nieh TG (2011) Effect of residual stresses on the hardness of bulk metallic glasses. Acta Mater 59:2858–2864

    Article  Google Scholar 

  • Wang Y, Li M, Xu J (2016) Toughen and harden metallic glass through designing statistical heterogeneity. Scripta Mater 113:10–13

    Article  Google Scholar 

  • Wang Y, Li M, Xu J (2017a) Free volume gradient effect on mechanical properties of metallic glasses. Scripta Mater 130:12–16

    Article  Google Scholar 

  • Wang Y, Li M, Xu J (2017b) Mechanical properties of spinodal decomposed metallic glass composites. Scripta Mater 135:41–45

    Article  Google Scholar 

  • Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ (2006) Periodic corrugation on dynamic fracture surface in brittle bulk metallic glass. Appl Phys Lett 89:181911

    Article  ADS  Google Scholar 

  • Yang B, Liaw PK, Wang G, Morrison M, Liu CT, Buchanan RA, Yokoyama Y (2004) In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments. Intermetallics 12:1265–1274

    Article  Google Scholar 

  • Yang B, Morrison ML, Liaw PK, Buchanan RA, Wang G, Liu CT, Denda M (2005) Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl Phys Lett 86:141904

    Article  ADS  Google Scholar 

  • Yang Q, Mota A, Ortiz M (2006) A finite-deformation constitutive model of bulk metallic glass plasticity. Comput Mech 37:194–204

    Article  Google Scholar 

  • Yavari AR, Moulec AL, Inoue A, Nishiyama N, Lupu N, Matsubara E, Botta WJ, Vaughan G, Michiel MD, Kvick A (2005) Excess free volume in metallic glasses measured by X-ray diffraction. Acta Mater 53:1611–1619

    Article  Google Scholar 

  • Yousfi MA, Hajlaoui K, Tourki Z, Yavari AR (2013) Serrated flow model for metallic glasses under compressive loading. Acta Metall Sin 26:503–508

    Article  Google Scholar 

  • Zhao M, Li M (2011a) A constitutive theory and modeling on deviation of shear band inclination angles in bulk metallic glasses. J Mater Res 24:2688–2696

    Article  ADS  Google Scholar 

  • Zhao M, Li M (2011b) Local heating in shear banding of bulk metallic glasses. Scripta Mater 65:493–496

    Article  Google Scholar 

  • Zhao M, Li M (2012) Comparative study of elastoplastic constitutive models for deformation of metallic glasses. Metals 2:488

    Article  Google Scholar 

  • Zhao M, Li M, Zheng YF (2011) Assessing the shear band velocity in metallic glasses using a coupled thermo-mechanical model. Philos Mag Lett 91:705–712

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Li .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, W. (2018). Constitutive Modeling in Metallic Glasses for Predictions and Designs. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_103-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_103-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics