Skip to main content

A Customizable Virtual Reality Framework for the Rehabilitation of Cognitive Functions

  • Chapter
  • First Online:
Book cover Recent Advances in Technologies for Inclusive Well-Being

Abstract

Brain injury can cause a variety of physical effects and cognitive deficits. Although it has not yet been systematically adopted in clinical settings, virtual reality promises to be an excellent therapeutic tool for regaining both locomotor and neurological capacities. This work presents the design and implementation of VR\(^2\) (Virtual Reality Rehabilitation), a customizable rehabilitation framework intended to enable the creation of motivating rehabilitation scenarios based on an ecologically valid semi-immersive system. Following the implementation phase, a study to test the acceptability of VR\(^2\) in a group of subjects with cerebral lesions was conducted to investigate the usability of the framework. The group consisted of 11 people from 22 to 70 years of age, who were divided into two groups depending on the chronicity of disorder. The adequacy of the interface between patient and system was verified through questionnaires containing subjective questions, which revealed good overall acceptance and enjoyment of the tool. Moreover, to obtain early results useful for tuning the overall system in preparation for rigorous clinical trials, a set of preliminary cognitive tests concerning the rehabilitation protocol was conducted within the same group. Although the preliminary findings are promising and reveal a positive trend in neurocognitive investigations, the system should undergo clinical trials before being used in real clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A video showing the interaction with the system is available at http://youtu.be/HCldmXLUz8E.

References

  1. Aboalsamh H, Al Hashim H, Alrashed F, Alkhamis N (2011) Virtual reality system specifications for pain management therapy. In: 2011 IEEE 11th international conference on bioinformatics and bioengineering (BIBE), pp 143–147. doi:10.1109/BIBE.2011.69

  2. Baldi M, Corr M, Fontana G, Marchetto G, Ofek Y, Severina D, Zadedyurina O (2011) Scalable fractional lambda switching: a testbed. J Opt Commun Netw 3(5):447–457

    Article  Google Scholar 

  3. Baldi M, Giacomelli R, Marchetto G (2009) Time-driven access and forwarding for industrial wireless multihop networks. IEEE Trans Ind Inform 5(2):99–112

    Article  Google Scholar 

  4. Baldi M, Marchetto G, Ofek Y (2007) A scalable solution for engineering streaming traffic in the future internet. Comput Netw 51(14):4092–4111

    Article  MATH  Google Scholar 

  5. Bart O, Katz N, Weiss P, Josman N (2006) Street crossing by typically developed children in real and virtual environments. In: 2006 international workshop on virtual rehabilitation, pp 42–46. doi:10.1109/IWVR.2006.1707525

  6. Borghetti M, Sardini E, Serpelloni M (2013) Sensorized glove for measuring hand finger flexion for rehabilitation purposes. IEEE Trans Instr Meas 62(12):3308–3314. doi:10.1109/TIM.2013.2272848

    Article  Google Scholar 

  7. Burdea G, Cioi D, Martin J, Fensterheim D, Holenski M (2010) The rutgers arm ii rehabilitation system: a feasibility study. IEEE Trans Neural Syst Rehabil Eng 18(5):505–514. doi:10.1109/TNSRE.2010.2052128

    Article  Google Scholar 

  8. Camporesi C, Kallmann M, Han J (2013) VR solutions for improving physical therapy. In Virtual reality (VR). IEEE, pp 77–78. doi:10.1109/VR.2013.6549371

  9. Carassa A, Morganti F, Tirassa M (2014) Movement, action, and situation: presence in virtual environments. Proc Presence 2004:7–12

    Google Scholar 

  10. Connelly L, Jia Y, Toro M, Stoykov M, Kenyon R, Kamper D (2010) A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans Neural Syst Rehabil Eng 18(5):551–559. doi:10.1109/TNSRE.2010.2047588

    Article  Google Scholar 

  11. Davies R, Lfgren E, Wallergrd M, Lindn A, Boschian K, Minr U, Sonesson B, Johansson G (2002) Three applications of virtual reality for brain injury rehabilitation of daily tasks. In: Proceedings of the 4th international conference on disability, Virtual reality and associated technologies, Veszprm, Hungary, pp 93–100

    Google Scholar 

  12. De Tanti A, Inzaghi M, Bonelli G, Mancuso M, Magnani M, Santucci N (1998) Normative data of the mida battery for the evaluation of reaction times. Eur Med Phys 34:221–220

    Google Scholar 

  13. Deutsch J, Deutsch D (1963) Attention: some theoretical consideration. Psychol Rev 70:80–90

    Article  Google Scholar 

  14. Deutsch J, Lewis J, Burdea G (2007) Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding. IEEE Tran Neural Syst Rehabil Eng 15(1):30–35. doi:10.1109/TNSRE.2007.891384

    Article  Google Scholar 

  15. Gourlay D, Lun K, Lee Y, Tay J (2000) Virtual reality for relearning daily living skills. Int J Med Inform 60(3):255–261. doi:10.1016/S1386-5056(00)00100-3

  16. Graefe A, Schultheis M (2013) Examining neurocognitive correlates of risky driving behavior in young adults using a simulated driving environment. In: 2013 International conference on Virtual rehabilitation (ICVR), pp 235–241. doi:10.1109/ICVR.2013.6662089

  17. Hazrati M, Hofmann U (2013) Avatar navigation in second life using brain signals. In: 2013 IEEE 8th International symposium on intelligent signal processing (WISP), pp 1–7. doi:10.1109/WISP.2013.6657473

  18. Hodges L, Anderson P, Burdea G, Hoffmann H, Rothbaum BO (2001) Treating psychological and phsyical disorders with vr. IEEE Comput Graph Appl 21(6):25–33. doi:10.1109/38.963458

    Article  Google Scholar 

  19. i Badia SB, Morgade AG, Samaha H, Verschure P (2013) Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training. IEEE Trans Neural Syst Rehabil Eng 21(2):174–181. doi:10.1109/TNSRE.2012.2229295

  20. Jack D, Boian R, Merians A, Tremaine M, Burdea G, Adamovich S, Recce M, Poizner H (2001) Virtual reality-enhanced stroke rehabilitationm. IEEE Trans Neural Syst Rehabil Eng 9(3):308–318

    Article  Google Scholar 

  21. Jacoby M, Averbuch S, Sacher Y, Katz N, Weiss P, Kizony R (2013) Effectiveness of executive functions training within a virtual supermarket for adults with traumatic brain injury: a pilot study. IEEE Trans Neural Syst Rehabil Eng 21(2):182–190. doi:10.1109/TNSRE.2012.2235184

    Article  Google Scholar 

  22. Josman N, Hof E, Klinger E, Marie R, Goldenberg K, Weiss P, Kizony R (2006) Performance within a virtual supermarket and its relationship to executive functions in post-stroke patients. In: 2006 International workshop on virtual rehabilitation, pp 106–109. doi:10.1109/IWVR.2006.1707536

  23. Klinger E, Kadri A, Le Guiet J, Coignard P, Lac N, Joseph P, Sorita E, Fuchs P, Leroy L, Servant F (2013) Agathe: A tool for personalized rehabilitation of cognitive functions. In: 2013 International conference on virtual rehabilitation (ICVR), pp 214–215. doi:10.1109/ICVR.2013.6662123

  24. Krch D, Nikelshpur O, Lavrador S, Chiaravalloti N, Koenig S, Rizzo A (2013) Pilot results from a virtual reality executive function task. In: 2013 International conference on virtual rehabilitation (ICVR), pp 15–21. doi:10.1109/ICVR.2013.6662092

  25. Lahiri U, Warren Z, Sarkar N (2011) Design of a gaze-sensitive virtual social interactive system for children with autism. IEEE Trans Neural Syst Rehabil Eng 19(4):443–452. doi:10.1109/TNSRE.2011.2153874

    Article  Google Scholar 

  26. Lavie N, Hirst A, De Fockert J, Viding E (2004) Load theory of selective attention and cognitive control. J Exp Psychol Gen 133:339–354

    Article  Google Scholar 

  27. Lezac M (ed) (1983) Neuropsychological assessment. Oxford University Press, Oxford

    Google Scholar 

  28. Lozano-Quilis J, Gil-Gomez H, Gil-Gomez J, Albiol-Perez S, Palacios G, Fardoum H, Mashat A (2013) Virtual reality system for multiple sclerosis rehabilitation using kinect. In: 2013 7th International conference on pervasive computing technologies for healthcare (Pervasive Health), pp 366–369

    Google Scholar 

  29. Mishra A, Foulds R (2013) Detection of user intent in neurorehablitation using a commercial eeg headset. In: 2013 39th Annual Northeast bioengineering conference (NEBEC), pp 21–22. doi:10.1109/NEBEC.2013.14

  30. Myall DJ, MacAskill MR, Davidson PR, Anderson T, Jones R (2008) Design of a modular and low-latency virtual-environment platform for applications in motor adaptation research, neurological disorders, and neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 16(3):298–309. doi:10.1109/TNSRE.2008.922676

    Article  Google Scholar 

  31. Neisser U (1978) Memory: what are the important questions? In: Practical aspects of memory. Academic Press, London, UK, pp 3–24

    Google Scholar 

  32. Nogueira K, Souza E, Lamounier A, Cardoso A, Soares A (2013) Architecture for controlling upper limb prosthesis using brainwaves. In: 2013 International conference on virtual rehabilitation (ICVR), pp 178–179. doi:10.1109/ICVR.2013.6662114

  33. Paravati G, Gatteschi V, Carlevaris G (2013) Improving bandwidth and time consumption in remote visualization scenarios through approximated diff-map calculation. Comput Vis Sci 15(3):135–146. doi:10.1007/s00791-013-0201-8

    Article  Google Scholar 

  34. Paravati G, Sanna A, Lamberti F, Ciminiera L (2011) An adaptive control system to deliver interactive virtual environment content to handheld devices. J Spec Top Mob Netw Appl 16(3):385–393. doi:10.1007/s11036-010-0255-5

    Article  Google Scholar 

  35. Paravati G, Sanna A, Lamberti F, Ciminiera L (2011) An open and scalable architecture for delivering 3d shared visualization services to heterogeneous devices. Concurrency Comput Pract Experience 23(11):1179–1195

    Article  Google Scholar 

  36. Popescu V, Burdea G, Bouzit M, Hentz V (2000) A virtual-reality-based telerehabilitation system with force feedback. IEEE Trans Inf Technol Biomed 4(1):45–51

    Google Scholar 

  37. Riva G (1998) Virtual environments in neuro science. IEEE Trans Inf Technol Biomed 2(4):275–281

    Article  Google Scholar 

  38. Riva G, Gaggioli A, Villani D, Preziosa A, Morganti F, Corsi R, Faletti G, Vezzadini L (2007) A free, open-source virtual reality platform for the rehabilitation of cognitive and psychological disorders. Virtual Rehabil 2007:159–163. doi:10.1109/ICVR.2007.4362158

    Google Scholar 

  39. Rizzo A, Parsons TD, Buckwalter JG (2012) Using virtual reality for clinical assessment and intervention. In: Handbook of technology in psychology, psychiatry, and neurology: theory, research, and practice (2012)

    Google Scholar 

  40. Roosendaal T (2014) Blender 3d. http://www.blender.org/

  41. Rose F, Brooks B, Attree E, Parslow D, Leadbetter A, McNeil J, Jayawardena S, Greenwood R, Potter J (1999) A preliminary investigation into the use of virtual environments in memory retraining after vascular brain injury: Indications for future strategy? Disabil Rehabil 21(12):548–554

    Article  Google Scholar 

  42. Roy A, Soni Y, Dubey S (2013) Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In: Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), 2013 IEEE, pp 298–304. doi:10.1109/GHTC-SAS.2013.6629934

  43. Schultheis MT, Mourant RR (2001) Virtual reality and driving: The road to better assessment for cognitively impaired populations. Presence: Teleoper Virtual Environ 10(4):431–439. doi:10.1162/1054746011470271

  44. Sherman W, Craig A (2002) Understanding virtual reality: interface, application and design. Morgan Kauffman, California

    Google Scholar 

  45. Silva L, Dantas R, Pantoja A, Pereira A (2013) Development of a low cost dataglove based on arduino for virtual reality applications. In: 2013 IEEE International conference on computational intelligence and virtual environments for measurement systems and applications (CIVEMSA), pp 55–59. doi:10.1109/CIVEMSA.2013.6617395

  46. Snider J, Plank M, Lee D, Poizner H (2013) Simultaneous neural and movement recording in large-scale immersive virtual environments. IEEE Trans Biomed Circ Syst 7(5):713–721. doi:10.1109/TBCAS.2012.2236089

    Article  Google Scholar 

  47. Spinnler H, Tognoni G, Bandera R, Della Sala S, Capitani EEA (1987) Standardizzazione e taratura italiana di test neuropsicologici. Ital J Neurol Sci 7(6)

    Google Scholar 

  48. Spyridonis F, Gronli TM, Hansen J, Ghinea G (2012) Evaluating the usability of a virtual reality-based android application in managing the pain experience of wheelchair users. In: 2012 Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 2460–2463. doi:10.1109/EMBC.2012.6346462

  49. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18(6):643–662

    Article  Google Scholar 

  50. Sucar L, Orihuela-Espina F, Velazquez R, Reinkensmeyer D, Leder R, Hernandez-Franco J (2014) Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform. IEEE Trans Neural Syst Rehabil Eng 22(3):634–643. doi:10.1109/TNSRE.2013.2293673

    Article  Google Scholar 

  51. Takacs B, Simon L (2007) A clinical virtual reality rehabilitation system for phobia treatment. In: Information visualization, 2007. IV ’07. 11th International conference, pp 798–806. doi:10.1109/IV.2007.7

  52. Tao G, Archambault P, Levin M (2013) Evaluation of kinect skeletal tracking in a virtual reality rehabilitation system for upper limb hemiparesis. In: 2013 International conference on virtual rehabilitation (ICVR), pp 164–165. doi:10.1109/ICVR.2013.6662084

  53. Treisman A (1998) Feature binding, attention and object perception. Philos Trans R Soc 353:1295–1306

    Article  Google Scholar 

  54. Tunik E, Saleh S, Adamovich S (2013) Visuomotor discordance during visually-guided hand movement in virtual reality modulates sensorimotor cortical activity in healthy and hemiparetic subjects. IEEE Trans Neural Syst Rehabil Eng 21(2):198–207. doi:10.1109/TNSRE.2013.2238250

    Article  Google Scholar 

  55. Ueki S, Kawasaki H, Ito S, Nishimoto Y, Abe M, Aoki T, Ishigure Y, Ojika T, Mouri T (2012) Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Trans Mechatron 17(1):136–146. doi:10.1109/TMECH.2010.2090353

    Article  Google Scholar 

  56. Villiger M, Hepp-Reymond MC, Pyk P, Kiper D, Eng K, Spillman J, Meilick B, Estevez N, Kollias SS, Curt A, Hotz-Boendermaker S (2011) Virtual reality rehabilitation system for neuropathic pain and motor dysfunction in spinal cord injury patients. In: 2011 International conference on virtual rehabilitation (ICVR), pp 1–4. doi:10.1109/ICVR.2011.5971865

  57. Weiss P, Naveh Y, Katz N (2003) Design and testing of a virtual environment to train stroke patients with unilateral spatial neglect to cross a street safely. Occup Ther Int 10(1):39–55

    Article  Google Scholar 

  58. Zhou J, Malric F, Shirmohammadi S (2010) A new hand-measurement method to simplify calibration in cyberglove-based virtual rehabilitation. IEEE Trans Instr Measur 59(10):2496–2504. doi:10.1109/TIM.2010.2057712

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Giuliano Geminiani, who supervised the work and provided insights and expertise that greatly assisted in this research. We are also immensely grateful to Dr. Marina Zettin, who supported the entire work and provided access to the host institution (Centro Puzzle), where we recruited the patients. This research was supported by the University of Turin and Centro Puzzle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Paravati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Paravati, G., Spataro, V.M., Lamberti, F., Sanna, A., Demartini, C.G. (2017). A Customizable Virtual Reality Framework for the Rehabilitation of Cognitive Functions. In: Brooks, A., Brahnam, S., Kapralos, B., Jain, L. (eds) Recent Advances in Technologies for Inclusive Well-Being. Intelligent Systems Reference Library, vol 119 . Springer, Cham. https://doi.org/10.1007/978-3-319-49879-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49879-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49877-5

  • Online ISBN: 978-3-319-49879-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics