Skip to main content

Inconsistency-Tolerant Querying of Description Logic Knowledge Bases

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9885))

Abstract

An important issue that arises when querying description logic (DL) knowledge bases is how to handle the case in which the knowledge base is inconsistent. Indeed, while it may be reasonable to assume that the TBox (ontology) has been properly debugged, the ABox (data) will typically be very large and subject to frequent modifications, both of which make errors likely. As standard DL semantics is useless in such circumstances (everything is entailed from a contradiction), several alternative inconsistency-tolerant semantics have been proposed with the aim of providing meaningful answers to queries in the presence of such data inconsistencies. In the first part of this chapter, we present and compare these inconsistency-tolerant semantics, which can be applied to any DL (or ontology language). The second half of the chapter summarizes what is known about the computational properties of these semantics and gives an overview of the main algorithmic techniques and existing systems, focusing on DLs of the DL-Lite family.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In fact, the rewritability results in [10] are proven for all ontology languages for which CQ answering and unsatisfiability testing can be performed via UCQ\(_{\ne }\)-rewriting. As DL-Lite satisfies these conditions, the results apply to DL-Lite KBs.

  2. 2.

    The formulation of the results in [15] suggests that CQ answering is also in P for data complexity, but as Theorem 27 shows, this is not the case.

  3. 3.

    The results in [23] are formulated for UCQs rather than CQs, but the same results are obtained for CQs.

  4. 4.

    The results in [23] are formulated for UCQs rather than CQs, but the same results are obtained for CQs.

References

  1. Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable description logics. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 218–307. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21768-0_9

    Chapter  Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. OWL Working Group. OWL 2 Web Ontology Language: Document Overview. W3C Recommendation (2009). http://www.w3.org/TR/owl2-overview/

  4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. (JAR) 39(3), 385–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15918-3_9

    Chapter  Google Scholar 

  6. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proceedings of the 18th Symposium on Principles of Database Systems (PODS), pp. 68–79 (1999)

    Google Scholar 

  7. Arenas, M., Bertossi, L., Kifer, M.: Applications of annotated predicate calculus to querying inconsistent databases. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 926–941. Springer, Heidelberg (2000). doi:10.1007/3-540-44957-4_62

    Chapter  Google Scholar 

  8. Chomicki, J.: Consistent query answering: five easy pieces. In Proceedings of the 10th International Conference on Database Theory (ICDT), pp. 1–17 (2007)

    Google Scholar 

  9. Bertossi, L.E.: Database Repairing and Consistent Query Answering: Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)

    Google Scholar 

  10. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI) (2013)

    Google Scholar 

  11. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language Profiles. W3C Recommendation (2012). http://www.w3.org/TR/owl2-profiles/

  12. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J. Comput. 17(5), 935–938 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Szelepcsényi, R.: The method of forcing for nondeterministic automata. Bull. EATCS 33, 96–99 (1987)

    MATH  Google Scholar 

  14. Bienvenu, M.: On the complexity of consistent query answering in the presence of simple ontologies. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  15. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in datalog \(+/-\) ontologies. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI) (2012)

    Google Scholar 

  16. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic knowledge bases under preferred repair semantics. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI) (2014)

    Google Scholar 

  17. Bourgaux,C.: Inconsistency handling in ontology-mediated query answering. Ph.D. thesis, University of Paris-Sud (2016)

    Google Scholar 

  18. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 364–369 (2005)

    Google Scholar 

  19. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Proceedings of the 10th International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 260–270 (2006)

    Google Scholar 

  20. Rosati, R.: On conjunctive query answering in \(\cal{EL}\). In: Proceedings of the 20th International Workshop on Description Logics (DL) (2007)

    Google Scholar 

  21. Krötzsch, M., Rudolph, S.: Conjunctive queries for \(\cal{EL}\) with composition of roles. In: Proceedings of the 20th International Workshop on Description Logics (DL) (2007)

    Google Scholar 

  22. Krisnadhi, A., Lutz, C.: Data complexity in the \(\cal{EL}\) family of DLs. In: Proceedings of the 20th International Workshop on Description Logics (DL) (2007)

    Google Scholar 

  23. Rosati, R.: On the complexity of dealing with inconsistency in description logic ontologies. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI) (2011)

    Google Scholar 

  24. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Complexity of inconsistency-tolerant query answering in datalog\(+/-\). In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., Leenheer, P., Dou, D. (eds.) OTM 2013. LNCS, vol. 8185, pp. 488–500. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41030-7_35

    Chapter  Google Scholar 

  25. Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consistent query answering under existential rules. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 1546–1552 (2015)

    Google Scholar 

  26. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Baget, J., Benferhat, S., Bouraoui, Z., Croitoru, M., Mugnier, M., Papini, O., Rocher, S., Tabia, K.: A general modifier-based framework for inconsistency-tolerant query answering. In: Proceedings of the 15th International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 513–516 (2016)

    Google Scholar 

  28. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept languages: from subsumption to instance checking. J. Log. Comput. (JLC) 4(4), 423–452 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for inconsistent DL-Lite ontologies. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 155–169. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23580-1_12

    Chapter  Google Scholar 

  31. Rosati, R., Ruzzi, M., Graziosi, M., Masotti, G.: Evaluation of techniques for inconsistency handling in OWL 2 QL ontologies. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7650, pp. 337–349. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35173-0_23

    Chapter  Google Scholar 

  32. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query answering in ontology-based data access. J. Web Semant. (JWS) 33, 3–29 (2015)

    Article  Google Scholar 

  33. Du, J., Qi, G., Shen, Y.-D.: Weight-based consistent query answering over inconsistent \(\cal{SHIQ}\) knowledge bases. Knowl. Inf. Syst. 34(2), 335–371 (2013)

    Article  Google Scholar 

  34. Fuxman, A.D., Miller, R.J.: First-order query rewriting for inconsistent databases. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 337–351. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30570-5_23

    Chapter  Google Scholar 

  35. Fuxman, A., Fazli, E., Miller, R.J.: Conquer: efficient management of inconsistent databases. In: Proceedings of the 31st ACM SIGMOD International Conference on Management of Data, pp. 155–166 (2005)

    Google Scholar 

  36. Chomicki, J., Marcinkowski, J., Staworko, S.: Computing consistent query answers using conflict hypergraphs. In: Proceedings of the 13th International Conference on Information and Knowledge Management (CIKM), pp. 417–426 (2004)

    Google Scholar 

  37. Chomicki, J., Marcinkowski, J., Staworko, S.: Hippo: a system for computing consistent answers to a class of SQL queries. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 841–844. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24741-8_53

    Chapter  Google Scholar 

  38. Marileo, M.C., Bertossi, L.E.: The consistency extractor system: Answer set programs for consistent query answering in databases. Data Knowl. Eng. 69(6), 545–572 (2010)

    Article  Google Scholar 

  39. Kolaitis, P.G., Pema, E., Tan, W.-C.: Efficient querying of inconsistent databases with binary integer programming. Proc. VLDB Endow. (PVLDB) 6(6), 397–408 (2013)

    Article  Google Scholar 

  40. Gottlob, G.: NP trees and Carnap’s modal logic. J. ACM 42(2), 421–457 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wagner, K.W.: More complicated questions about maxima and minima, and some closures of NP. Theoret. Comput. Sci. 51, 53–80 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Eiter, T., Gottlob, G.: The complexity class \(\Theta ^P_2\): Recent results and applications in AI and modal logic. In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 1–18. Springer, Heidelberg (1997). doi:10.1007/BFb0036168

    Chapter  Google Scholar 

  43. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to query answering in DL-Lite. In: Proceedings of the 12th International Conference on the Principles of Knowledge Representation and Reasoning (KR) (2010)

    Google Scholar 

  44. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Explaining inconsistency-tolerant query answering over description logic knowledge bases. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI) (2016)

    Google Scholar 

  45. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Query-driven repairing of inconsistent dllite knowledge bases. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI) (2016)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by ANR project PAGODA (ANR-12-JS02-007-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghyn Bienvenu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bienvenu, M., Bourgaux, C. (2017). Inconsistency-Tolerant Querying of Description Logic Knowledge Bases. In: Pan, J., et al. Reasoning Web: Logical Foundation of Knowledge Graph Construction and Query Answering. Reasoning Web 2016. Lecture Notes in Computer Science(), vol 9885. Springer, Cham. https://doi.org/10.1007/978-3-319-49493-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49493-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49492-0

  • Online ISBN: 978-3-319-49493-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics