Skip to main content

Catalytic Processes for Light Olefin Production

  • Chapter
Springer Handbook of Petroleum Technology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Up to now, the major process for light olefin production has been thermal steam cracking. The diversification of feedstocks from heavy oil fractions to light hydrocarbons as well as methanol led to the development of catalytic processes. Differing from the radical mechanism for olefin formation by the thermal process, there are two reaction mechanisms for the description of olefin formation in the catalytic process: the carbocation mechanism for hydrocarbon cracking and the hydrocarbon pool mechanism for methanol to light olefin.

Deep catalytic cracking (GlossaryTerm

DCC

), developed by the Research Institute of Petroleum Processing (RIPP) of Sinopec, is a fluidized catalytic cracking process that uses a proprietary catalyst for the selective cracking of a wide variety of heavy feedstocks to produce light olefins. The catalytic pyrolysis process (GlossaryTerm

CPP

), also developed by RIPP of Sinopec, is an extension of DCC that gives an increased ethylene yield while keeping propylene production at a reasonable rate. The commercial units run worldwide showing the success of the development of these processes.

The key process features, the representative catalysts, and the performance of PetroFCC, Propylur, SuperFLEX, propylene catalytic cracking, olefins catalytic cracking, olefins conversion technology, propane dehydrogenation, and methanol-to-olefins are also briefly introduced.

In future, for the production of light olefin, catalytic processing is the key step to integrate the refining and petrochemicals plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.G. Anderson, R.R. Schumacher, R. Duren, A.P. Singh, R.A. Santen: An attempt to predict the optimum zeolite-based catalyst for selective cracking of naphtha-range hydrocarbons to light olefins, J. Mol. Catal. A 181, 291–301 (2002)

    Article  CAS  Google Scholar 

  2. J. Weitkamp, P.A. Jacobs, J.A. Martens: Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite, Appl. Catal. 8, 123–141 (1983)

    Article  CAS  Google Scholar 

  3. J.S. Buchanan, J.G. Santiesteban, W.O. Haag: Mechanistic considerations in acid-catalyzed cracking of olefins, J. Catal. 158, 279–287 (1996)

    Article  CAS  Google Scholar 

  4. K. Wakui, K. Satoh, G. Sawada, K. Shiozawa, K. Matano, K. Suzuki, T. Hayakawa, Y. Yoshimura, K. Murata, F. Mizukami: Dehydrogenative cracking of n-butane using double-stage reaction, Appl. Catal. 230, 195–202 (2002)

    Article  CAS  Google Scholar 

  5. A. Corma, A.V. Orchilles: Formation of products responsible for motor and research octane of gasolines produced by cracking: The implication of framework Si/Al ratio and operation variables, J. Catal. 115, 551–566 (1989)

    Article  CAS  Google Scholar 

  6. L. Smith, A.K. Cheetham, R.E. Morris, L. Marchese, J.M. Thomas, P.A. Wright, J. Chen: On the nature of water bound to a solid acid catalyst, Science 271(5250), 799–802 (1996)

    Article  CAS  Google Scholar 

  7. C.M. Wang, Y.D. Wang, Z.K. Xie: Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principle: Are olefins themselves the dominating hydrocarbon pool species?, J. Catal. 301, 8–19 (2013)

    Article  CAS  Google Scholar 

  8. X. Shu, W. Fu, M. He, M. Zhou, Z. Shi, S. Zang: Rare earth-coutaining high-silica zeolite having penta-sil type structure, US Patent (Application) 5232675 (1993)

    Google Scholar 

  9. Y.B. Luo, Y. Ouyang, X. Shu, M. He, D. Wang, B. Zong, M. Li: MFI structure molecular sieve containing phosphor and metal component and its use, US Patent (Application) 7758847 B2 (2004)

    Google Scholar 

  10. X.L. Hou: Advances in Refining Technology in China (China Petrochemical, Beijing 1997) pp. 12–25

    Google Scholar 

  11. X.L. Hou: Advances in Refining Technology in China (China Petrochemical, Beijing 1997) pp. 68–78

    Google Scholar 

  12. F.M. Zhang, X. Shu, Z. Shi, W. Wang, F. Qin, X. Wang: US Patent (Application) 6080698 (1998)

    Google Scholar 

  13. Z.T. Li, F.K. Jiang, E.Z. Min: DCC – A new propylene production process from vacuum gas oil, Proc. NPRA Annu. Meet (1990)

    Google Scholar 

  14. X.Q. Wang, Z.T. Li, F.K. Jiang, B.D. Yu: Commercial trial of DCC (deep catalytic cracking) process for gaseous olefins production, Proc. AIChE 1991 (1991)

    Google Scholar 

  15. Z.G. Zhang, C.G. Xie, G.Q. Zhu: Experimental study of DCC-plus technology, Petroleum Process. Petrochem. 41(6), 39–43 (2010)

    Google Scholar 

  16. G.Q. Wang, W.Y. Shi, C.G. Xie, Z.T. Li: Catalytic pyrolysis process (CPP) – An upswing of RFCC for ethylene and propylene production, Proc. 5th Int. Conf. Refinery Processing, AIChE (2002) pp. 241–249

    Google Scholar 

  17. X.Q. Zhu, C.G. Xie: Research and commercial application of CPP technology for producing light olefins from heavy oil, China Petroleum Process. Petrochem. Technol. 15(3), 7–12 (2013)

    CAS  Google Scholar 

  18. D. Greer, M. Houdek, R. Pittman, J. Woodcock: Proc. DGMK Conf. Creating Value from Light Olefins – Production and Conversion, Hamburg (2001) pp. 31–43

    Google Scholar 

  19. R.M. Pittman, L.L. Upson: US Patent (Application) 6538169 (2003)

    Google Scholar 

  20. V. Rybkin, B. Ellis/UOP: Producing Propylene from FCC Unit. (2007), http://core.theenergyexchange.co.uk/agile_assets/588/RYBKIN_UOP_-_eng.pdf

  21. T. Brookes: New technology developments in the petrochemical industry publication. In: Proc. Echem./Petroleum Economist (2012) http://www.petroleum-economist.com/pdf/TerryBrookes.pdf

  22. H.V. Bolt, S. Glanz: Increase propylene yields cost-effectively, Hydrocarb. Process. 81(12), 77 (2002)

    CAS  Google Scholar 

  23. H.V. Bolt, H. Zimmermann: Proc. 13th Ethylene Producers Conf (American Institute of Chemical Engineers, New York 2001) pp. 518–547

    Google Scholar 

  24. H.V. Boelt, S. Glanz/Linde: Technology for propylene boosting in steamcrackers. (2003) http://www.digitalrefining.com/data/articles/1000530

  25. M.J. Tallman, P.K. Niccum, M.F. Gilbert, C.R. Santner: Consider improving refining and petrochemical integration as a revenue-generating option, Hydrocarb. Process. 80(11), 47–53 (2001)

    Google Scholar 

  26. D.W. Leyshon, G.E. Cozzone: Production of olefins from a mixture of cut olefins and paraffins, US Patent (Application) 5043522 (1991)

    Google Scholar 

  27. M.J. Tallman, C.N. Eng/KBR: Propylene on purpose. (2010) http://www.kbr.com/newsroom/publications/articles/propylene-on-purpose.pdf

  28. KBR Technology: Superflex 74-Convert light olefinic feeds to propylene, http://www.digitalrefining.com/data/literature/file/1618768792.pdf

  29. C. Eng: Producing propylene, Hydrocarb. Eng. 9(7), P69 (2004)

    Google Scholar 

  30. M.J. Tallman, C. Eng: Propylene on purpose, Hydrocarb. Eng. 15(12), 51 (2010)

    Google Scholar 

  31. C. Eng: Economic routes to propylene, Hydrocarb. Asia 14(4), 36 (2004)

    Google Scholar 

  32. D.L. Johnson, K.E. Nariman, R.A. Ware: Catalytic production of light olefin rich in propylene, US Patent (Application) 6222087 (2001)

    Google Scholar 

  33. Catalagram Division: Special edition: propylene: opportunities, technologies, markets. (2004), http://www.grace.com/about/businesses/Documents/Catalagram94SP.pdf

  34. Nexant: Propylene technology: the next generation. (2009) http://www.chemsystems.com/reports/search/docs/prospectus/MC09_Propylene_Technology_pros.pdf

  35. P.A. Ruziska, T.R. Steffens: AIChE Spring National Meeting, Technology Session of the 12th Ethylene Producers’ Conference, Houston (2001)

    Google Scholar 

  36. J. Teng, Z.K. Xie: OCC process for propylene from C4 olefins production, Proc. Hydrocarbon Asia (2006) p. 26

    Google Scholar 

  37. J. Teng, G. Zhao, Z. Xie, Q. Chen: Production of propylene from C4 olefins by catalytic cracking – The effect of ZSM-5 crystal size, Proc. 18th World Petroleum Congr., Johannesburg (2005) pp. 25–28

    Google Scholar 

  38. J. Teng, R. Wang, Z. Xie, Y. Gan: New olefin production technologies in sninopec SRIPT, Proc. 19th World Petroleum Congr., Madrid (Institute of Petroleum, London 2008)

    Google Scholar 

  39. J. Teng, Z. Xie, W. Yang: Catalytic cracking of C4-olefin to produce propylene over H-ZSM-5. Sinopec, Proc. 15th Int. Zeolite Conf., Beijing (2007)

    Google Scholar 

  40. J. De Barros: Olefins conversion technology application, Proc. 17th World Petroleum Congr., Rio de Janeiro (2002)

    Google Scholar 

  41. J. Cosyns, J. Chodorge, D. Commereuc, B. Tork: Maximize propylene production, Hydrocarb. Process. 77(3), 61–65 (1998)

    CAS  Google Scholar 

  42. J.P. Laugier: Proc. 12th Ethylene Producers Conf. (American Institute of Chemical Engineers, New York 2000) pp. 123–138

    Google Scholar 

  43. CB&I: Olefins Conversion Technology, http://www.cbi.com/images/uploads/tech_sheets/Olefins-12.pdf

  44. S. Kantotorowicz: The path to production, Hydrocarb. Eng. 11(1), P89 (2006)

    Article  Google Scholar 

  45. S. Wenzel. The Uhde STAR process: Oxydehydrogenation of light paraffins to olefins, http://www.digitalrefining.com/data/literature/file/2130808091.pdf

  46. M. Heinritz-Adrian, S. Wenzel, F. Youssef/Uhde GmbH: Advanced propane dehydrogenation Oxdehydrogenation-based on-purpose propane dehydrogenation can close the propylene supply-demand gap, (2008) www.digitalrefining.com/article/1000632

  47. S. Kvisle, H.R. Nilsen, T. Fuglerud, A. Gronvold, B.V. Vora, P.R. Pujado, P.T. Barger, J.M. Andersen: Methanol to Olefins (MtO): State of the art and perspectives, Proc. DGMK Conf. Creating Value from Light Olefins – Prod. and Convers., Hamburg (2001) pp. 73–84

    Google Scholar 

  48. P.T. Barger, B.V. Vora: Methanol to olefin process with increased selectivity to ethylene and propylene, US Patent (Application) 6534692 (2003)

    Google Scholar 

  49. Total R&D: MTO/OCP: A strategic research project, http://www.totalrefiningchemicals.com/SiteCollectionDocuments/Brochures/Thematic/brochure_mto_en.pdf

  50. J. Zhu, Y. Cui, Y.J. Chen, H.Q. Zhou, Y. Wang, F. Wei: Recent researches on the process from methanol to olefins, CIESC J. 61(7), 1674–1984 (2010)

    CAS  Google Scholar 

  51. R.W. Haddock: The Integration of Refining and Petrochemicals,(1999) NPRA, IPC-99-66

    Google Scholar 

  52. N.Y. Chen: An environmentally friendly oil industry?, Chem. Innov. 31(4), 11–21 (2001)

    CAS  Google Scholar 

  53. J.G. Furtado Ramos, A. Pinho: Double riser FCC: An opportunity for the petrochemical industry, Proc. NPRA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genquan Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, G., Xie, C., Li, Z., Wang, X. (2017). Catalytic Processes for Light Olefin Production. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_36

Download citation

Publish with us

Policies and ethics