Skip to main content

Breast Cancer Genetics

  • Chapter
  • First Online:
Breast Cancer

Abstract

The clustering of breast cancer in families has been recognized for centuries. The modern era of breast cancer genetics began with the mapping of the BRCA1 gene and the identification of TP53 as the gene underlying Li–Fraumeni syndrome, both in 1990. In the modern era, next-generation sequencing technologies have been widely adopted, providing less expensive more comprehensive analysis of multiple genes concurrently in individuals at increased risk based on family history. The field is working hard to rapidly gather data on the breast and other cancer risks associated with the so-called moderate-penetrance susceptibility genes and to enhance the data on management of BRCA1, BRCA2, and other high-penetrance genes. The identification of women who carry pathogenic mutations in breast cancer predisposition genes has enabled more precise targeting of intensified surveillance and targeted risk-reduction strategies—medical and surgical—to the members of families who share the mutation and are truly high risk, rather than exposing those who share the family history but not the mutation, so do not share the risk. The progress has come with many new questions about how best to use these powerful technologies, work that remains ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Endo BX:

Endometrial biopsy

HBOC:

Hereditary breast and ovarian cancer

HDGC:

Hereditary diffuse gastric cancer

MMG:

Mammography

MRI:

Magnetic resonance imaging

RRSO:

Risk-reducing salpingo-oophorectomy

TVUS:

Transvaginal ultrasound

References

  1. Carroll JC et al (2008) Hereditary breast and ovarian cancers. Can Fam Physician 54(12):1691–1692

    PubMed  PubMed Central  Google Scholar 

  2. Lalloo F, Evans DG (2012) Familial breast cancer. Clin Genet 82(2):105–114

    Article  CAS  PubMed  Google Scholar 

  3. Slamon DJ et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    Article  CAS  PubMed  Google Scholar 

  4. Dowsett M et al (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28(11):1829–1834

    Article  PubMed  Google Scholar 

  5. Filipits M et al (2014) The PAM50 risk-of-recurrence score predicts risk for late distant recurrence after endocrine therapy in postmenopausal women with endocrine-responsive early breast cancer. Clin Cancer Res 20(5):1298–1305

    Article  CAS  PubMed  Google Scholar 

  6. Silver DP et al (2010) Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28(7):1145–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Byrski T et al (2014) Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 147(2):401–405

    Article  CAS  PubMed  Google Scholar 

  8. Balmana J et al (2011) BRCA in breast cancer: ESMO Clinical Practice Guidelines. Ann Oncol 22(Suppl 6):vi31–vi34

    PubMed  Google Scholar 

  9. Robertson L et al (2012) BRCA1 testing should be offered to individuals with triple-negative breast cancer diagnosed below 50 years. Br J Cancer 106(6):1234–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hughes DJ (2008) Use of association studies to define genetic modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Fam Cancer 7(3):233–244

    Article  CAS  PubMed  Google Scholar 

  11. Tung N et al (2015) Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer 121(1):25–33

    Article  CAS  PubMed  Google Scholar 

  12. Hall JM et al (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250(4988):1684–1689

    Article  CAS  PubMed  Google Scholar 

  13. Wooster R et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265(5181):2088–2090

    Article  CAS  PubMed  Google Scholar 

  14. King MC et al (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302(5645):643–646

    Article  CAS  PubMed  Google Scholar 

  15. Liede A, Karlan BY, Narod SA (2004) Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol 22(4):735–742

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25(11):1329–1333

    Article  PubMed  PubMed Central  Google Scholar 

  17. Breast Cancer Linkage, C (1999) Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91(15):1310–1316

    Article  Google Scholar 

  18. Mersch J et al (2015) Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 121(2):269–275

    Article  CAS  PubMed  Google Scholar 

  19. Mavaddat N et al (2012) Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21(1):134–147

    Article  CAS  PubMed  Google Scholar 

  20. Armes JE et al (1998) The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations: a population-based study. Cancer 83(11):2335–2345

    Article  CAS  PubMed  Google Scholar 

  21. Southey MC et al (2011) Morphological predictors of BRCA1 germline mutations in young women with breast cancer. Br J Cancer 104(6):903–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bane AL et al (2007) BRCA2 mutation-associated breast cancers exhibit a distinguishing phenotype based on morphology and molecular profiles from tissue microarrays. Am J Surg Pathol 31(1):121–128

    Article  PubMed  Google Scholar 

  23. Spurdle AB et al (2014) Refined histopathological predictors of BRCA1 and BRCA2 mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Res 16(6):3419

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kurian AW (2010) BRCA1 and BRCA2 mutations across race and ethnicity: distribution and clinical implications. Curr Opin Obstet Gynecol 22(1):72–78

    Article  PubMed  Google Scholar 

  25. Lecarpentier J et al (2011) Variation in breast cancer risk with mutation position, smoking, alcohol, and chest X-ray history, in the French National BRCA1/2 carrier cohort (GENEPSO). Breast Cancer Res Treat 130(3):927–938

    Article  CAS  PubMed  Google Scholar 

  26. Antoniou AC et al (2008) Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet 82(4):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Antoniou AC et al (2009) Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 18(22):4442–4456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Engel C et al (2010) Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 19(11):2859–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaudet MM et al (2010) Common genetic variants and modification of penetrance of BRCA2-associated breast cancer. PLoS Genet 6(10):e1001183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cox DG et al (2011) Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers. Hum Mol Genet 20(23):4732–4747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rebbeck TR et al (2015) Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313(13):1347–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez KD et al (2009) Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27(8):1250–1256

    Article  CAS  PubMed  Google Scholar 

  33. Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9(10):724–737

    Article  CAS  PubMed  Google Scholar 

  34. Birch JM et al (1994) Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res 54(5):1298–1304

    CAS  PubMed  Google Scholar 

  35. Varley JM (2003) Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21(3):313–320

    Article  CAS  PubMed  Google Scholar 

  36. Nichols KE et al (2001) Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiol Biomarkers Prev 10(2):83–87

    CAS  PubMed  Google Scholar 

  37. Birch JM et al (1998) Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene 17(9):1061–1068

    Article  CAS  PubMed  Google Scholar 

  38. Olivier M et al (2003) Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 63(20):6643–6650

    CAS  PubMed  Google Scholar 

  39. Walsh T et al (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295(12):1379–1388

    Article  CAS  PubMed  Google Scholar 

  40. Masciari S et al (2012) Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat 133(3):1125–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Melhem-Bertrandt A et al (2012) Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer 118(4):908–913

    Article  CAS  PubMed  Google Scholar 

  42. Wilson JR et al (2010) A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet 47(11):771–774

    Article  CAS  PubMed  Google Scholar 

  43. Domchek SM et al (2013) Multiplex genetic testing for cancer susceptibility: out on the high wire without a net? J Clin Oncol 31(10):1267–1270

    Article  PubMed  Google Scholar 

  44. Slavin TP et al (2015) Clinical application of multigene panels: challenges of next-generation counseling and cancer risk management. Front Oncol 5:208

    PubMed  PubMed Central  Google Scholar 

  45. Xie ZM et al (2011) Germline mutations of the E-cadherin gene in families with inherited invasive lobular breast carcinoma but no diffuse gastric cancer. Cancer 117(14):3112–3117

    Article  CAS  PubMed  Google Scholar 

  46. Yurgelun MB et al (2015) Identification of a variety of mutations in cancer predisposition genes in patients with suspected lynch syndrome. Gastroenterology 149(3):604–613. e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Behjati S et al (2014) A pathogenic mosaic TP53 mutation in two germ layers detected by next generation sequencing. PLoS One 9(5):e96531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Caldas C et al (1999) Familial gastric cancer: overview and guidelines for management. J Med Genet 36(12):873–880

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Guilford P et al (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392(6674):402–405

    Article  CAS  PubMed  Google Scholar 

  50. Berx G et al (1995) E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J 14(24):6107–6115

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Takeichi M et al (1992) Cytoplasmic control of cadherin-mediated cell-cell adhesion. Cold Spring Harb Symp Quant Biol 57:327–334

    Article  CAS  PubMed  Google Scholar 

  52. Christofori G, Semb H (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24(2):73–76

    Article  CAS  PubMed  Google Scholar 

  53. van der Post RS et al (2015) Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet 52(6):361–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Benusiglio PR et al (2013) CDH1 germline mutations and the hereditary diffuse gastric and lobular breast cancer syndrome: a multicentre study. J Med Genet 50(7):486–489

    Article  CAS  PubMed  Google Scholar 

  55. Petridis C et al (2014) Germline CDH1 mutations in bilateral lobular carcinoma in situ. Br J Cancer 110(4):1053–1057

    Article  CAS  PubMed  Google Scholar 

  56. Corso G et al (2014) E-cadherin germline mutation carriers: clinical management and genetic implications. Cancer Metastasis Rev 33(4):1081–1094

    Article  CAS  PubMed  Google Scholar 

  57. Hansford S et al (2015) Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol 1(1):23–32

    Article  PubMed  Google Scholar 

  58. Adank MA et al (2011) CHEK2*1100delC homozygosity is associated with a high breast cancer risk in women. J Med Genet 48(12):860–863

    Article  CAS  PubMed  Google Scholar 

  59. Eng C (1993) PTEN Hamartoma tumor syndrome. In: Pagon RA et al (eds) GeneReviews(R). University of Washington, Seattle WA

    Google Scholar 

  60. Ngeow J et al (2015) Detecting germline PTEN mutations among at-risk patients with cancer: an age- and sex-specific cost-effectiveness analysis. J Clin Oncol 33(23):2537–2544

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shen WH et al (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1):157–170

    Article  CAS  PubMed  Google Scholar 

  62. Liaw D et al (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16(1):64–67

    Article  CAS  PubMed  Google Scholar 

  63. Zhou XP et al (2003) Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am J Hum Genet 73(2):404–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Starink TM et al (1986) The Cowden syndrome: a clinical and genetic study in 21 patients. Clin Genet 29(3):222–233

    Article  CAS  PubMed  Google Scholar 

  65. Tan MH et al (2012) Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18(2):400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bubien V et al (2013) High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet 50(4):255–263

    Article  CAS  PubMed  Google Scholar 

  67. Mester J, Eng C (2015) Cowden syndrome: recognizing and managing a not-so-rare hereditary cancer syndrome. J Surg Oncol 111(1):125–130

    Article  PubMed  Google Scholar 

  68. Tan MH et al (2011) A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet 88(1):42–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hobert JA, Eng C (2009) PTEN hamartoma tumor syndrome: an overview. Genet Med 11(10):687–694

    Article  CAS  PubMed  Google Scholar 

  70. Nieuwenhuis MH et al (2014) Cancer risk and genotype-phenotype correlations in PTEN hamartoma tumor syndrome. Fam Cancer 13(1):57–63

    Article  CAS  PubMed  Google Scholar 

  71. Daly MB et al (2016) Genetic/familial high-risk assessment: breast and ovarian, version 2.2015. J Natl Compr Canc Netw 14(2):153–162

    Article  PubMed  Google Scholar 

  72. Utsunomiya J et al (1975) Peutz-Jeghers syndrome: its natural course and management. Johns Hopkins Med J 136(2):71–82

    CAS  PubMed  Google Scholar 

  73. Collins SP et al (2000) LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 345(Pt 3):673–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Corradetti MN et al (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18(13):1533–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jeghers H, Mc KV, Katz KH (1949) Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance. N Engl J Med 241(25):993. illust; passim

    Article  CAS  PubMed  Google Scholar 

  76. Hemminki A et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391(6663):184–187

    Article  CAS  PubMed  Google Scholar 

  77. Volikos E et al (2006) LKB1 exonic and whole gene deletions are a common cause of Peutz-Jeghers syndrome. J Med Genet 43(5):e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lim W et al (2004) Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology 126(7):1788–1794

    Article  CAS  PubMed  Google Scholar 

  79. Hemminki A (1999) The molecular basis and clinical aspects of Peutz-Jeghers syndrome. Cell Mol Life Sci 55(5):735–750

    Article  CAS  PubMed  Google Scholar 

  80. Kean S (2014) Breast cancer. The ‘other’ breast cancer genes. Science 343(6178):1457–1459

    Article  PubMed  Google Scholar 

  81. Stracker TH, Usui T, Petrini JH (2009) Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 8(9):1047–1054

    Article  CAS  Google Scholar 

  82. Consortium CBCC-C (2004) CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9065 controls from 10 studies. Am J Hum Genet 74(6):1175–1182

    Article  Google Scholar 

  83. Gage M, Wattendorf D, Henry LR (2012) Translational advances regarding hereditary breast cancer syndromes. J Surg Oncol 105(5):444–451

    Article  CAS  PubMed  Google Scholar 

  84. Meijers-Heijboer H et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31(1):55–59

    Article  CAS  PubMed  Google Scholar 

  85. Schmidt MK et al (2007) Breast cancer survival and tumor characteristics in premenopausal women carrying the CHEK2*1100delC germline mutation. J Clin Oncol 25(1):64–69

    Article  CAS  PubMed  Google Scholar 

  86. Hollestelle A et al (2010) Discovering moderate-risk breast cancer susceptibility genes. Curr Opin Genet Dev 20(3):268–276

    Article  CAS  PubMed  Google Scholar 

  87. Ahmed M, Rahman N (2006) ATM and breast cancer susceptibility. Oncogene 25(43):5906–5911

    Article  CAS  PubMed  Google Scholar 

  88. Thompson D et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97(11):813–822

    Article  CAS  PubMed  Google Scholar 

  89. Bueno RC et al (2014) ATM down-regulation is associated with poor prognosis in sporadic breast carcinomas. Ann Oncol 25(1):69–75

    Article  CAS  PubMed  Google Scholar 

  90. Xia B et al (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22(6):719–729

    Article  CAS  PubMed  Google Scholar 

  91. Rahman N et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39(2):165–167

    Article  CAS  PubMed  Google Scholar 

  92. Fernandes PH et al (2014) Comprehensive sequencing of PALB2 in patients with breast cancer suggests PALB2 mutations explain a subset of hereditary breast cancer. Cancer 120(7):963–967

    Google Scholar 

  93. Antoniou AC et al (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371(6):497–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Uusitalo E et al (2016) Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol 34(17):1978–1986

    Article  PubMed  Google Scholar 

  95. Nguyen R et al (2011) Plexiform neurofibromas in children with neurofibromatosis type 1: frequency and associated clinical deficits. J Pediatr 159(4):652–655. e2

    Article  PubMed  Google Scholar 

  96. Huson SM, Compston DA, Harper PS (1989) A genetic study of von Recklinghausen neurofibromatosis in south east Wales. II. Guidelines for genetic counselling. J Med Genet 26(11):712–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosenfeld A et al (2010) Neurofibromatosis type 1 and high-grade tumors of the central nervous system. Childs Nerv Syst 26(5):663–667

    Article  PubMed  Google Scholar 

  98. Walther MM et al (1999) von Recklinghausen’s disease and pheochromocytomas. J Urol 162(5):1582–1586

    Article  CAS  PubMed  Google Scholar 

  99. Maertens O et al (2006) Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum Mol Genet 15(6):1015–1023

    Article  CAS  PubMed  Google Scholar 

  100. Sharif S et al (2007) Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J Med Genet 44(8):481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Seminog OO, Goldacre MJ (2015) Age-specific risk of breast cancer in women with neurofibromatosis type 1. Br J Cancer 112(9):1546–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Damiola F et al (2014) Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Res 16(3):R58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zhang G et al (2013) Significant association between Nijmegen breakage syndrome 1 657del5 polymorphism and breast cancer risk. Tumour Biol 34(5):2753–2757

    Article  CAS  PubMed  Google Scholar 

  104. Mosor M et al (2010) RAD50 gene mutations are not likely a risk factor for breast cancer in Poland. Breast Cancer Res Treat 123(2):607–609

    Article  PubMed  Google Scholar 

  105. He M et al (2012) RAD50 and NBS1 are not likely to be susceptibility genes in Chinese non-BRCA1/2 hereditary breast cancer. Breast Cancer Res Treat 133(1):111–116

    Article  CAS  PubMed  Google Scholar 

  106. Tung N et al (2016) Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol 13(9):581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Easton DF et al (2007) A systematic genetic assessment of 1433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 81(5):873–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tilanus-Linthorst M et al (2002) A BRCA1/2 mutation, high breast density and prominent pushing margins of a tumor independently contribute to a frequent false-negative mammography. Int J Cancer 102(1):91–95

    Article  CAS  PubMed  Google Scholar 

  109. Pijpe A et al (2012) Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ 345:e5660

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hartmann LC et al (2001) Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst 93(21):1633–1637

    Article  CAS  PubMed  Google Scholar 

  111. Meijers-Heijboer H et al (2001) Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 345(3):159–164

    Article  CAS  PubMed  Google Scholar 

  112. Rebbeck TR et al (2004) Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol 22(6):1055–1062

    Article  PubMed  Google Scholar 

  113. Domchek SM et al (2010) Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 304(9):967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Evans DG et al (2009) Risk reducing mastectomy: outcomes in 10 European centres. J Med Genet 46(4):254–258

    Article  CAS  PubMed  Google Scholar 

  115. Peled AW et al (2014) Total skin-sparing mastectomy in BRCA mutation carriers. Ann Surg Oncol 21(1):37–41

    Article  PubMed  Google Scholar 

  116. Rebbeck TR et al (2002) Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346(21):1616–1622

    Article  PubMed  Google Scholar 

  117. Kauff ND et al (2002) Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346(21):1609–1615

    Article  PubMed  Google Scholar 

  118. Finch A et al (2006) Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 Mutation. JAMA 296(2):185–192

    Article  CAS  PubMed  Google Scholar 

  119. Domchek SM et al (2006) Mortality after bilateral salpingo-oophorectomy in BRCA1 and BRCA2 mutation carriers: a prospective cohort study. Lancet Oncol 7(3):223–229

    Article  CAS  PubMed  Google Scholar 

  120. Finch AP et al (2014) Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol 32(15):1547–1553

    Article  PubMed  PubMed Central  Google Scholar 

  121. Madalinska JB et al (2006) The impact of hormone replacement therapy on menopausal symptoms in younger high-risk women after prophylactic salpingo-oophorectomy. J Clin Oncol 24(22):3576–3582

    Article  PubMed  Google Scholar 

  122. Anderson GL et al (2004) Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291(14):1701–1712

    Article  CAS  PubMed  Google Scholar 

  123. Rossouw JE et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–333

    Article  CAS  PubMed  Google Scholar 

  124. Rebbeck TR et al (2005) Effect of short-term hormone replacement therapy on breast cancer risk reduction after bilateral prophylactic oophorectomy in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol 23(31):7804–7810

    Article  CAS  PubMed  Google Scholar 

  125. Daly MB et al (2015) Salpingectomy as a means to reduce ovarian cancer risk. Cancer Prev Res (Phila) 8(5):342–348

    Article  Google Scholar 

  126. McAlpine JN et al (2014) Opportunistic salpingectomy: uptake, risks, and complications of a regional initiative for ovarian cancer prevention. Am J Obstet Gynecol 210(5):471 e1–471 e11

    Article  Google Scholar 

  127. Iodice S et al (2010) Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer 46(12):2275–2284

    Article  CAS  PubMed  Google Scholar 

  128. Moorman PG et al (2013) Oral contraceptives and risk of ovarian cancer and breast cancer among high-risk women: a systematic review and meta-analysis. J Clin Oncol 31(33):4188–4198

    Article  CAS  PubMed  Google Scholar 

  129. Gronwald J et al (2006) Tamoxifen and contralateral breast cancer in BRCA1 and BRCA2 carriers: an update. Int J Cancer 118(9):2281–2284

    Article  CAS  PubMed  Google Scholar 

  130. Narod SA et al (2000) Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet 356(9245):1876–1881

    Article  CAS  PubMed  Google Scholar 

  131. To C et al (2014) The PARP inhibitors, veliparib and olaparib, are effective chemopreventive agents for delaying mammary tumor development in BRCA1-deficient mice. Cancer Prev Res (Phila) 7(7):698–707

    Article  CAS  Google Scholar 

  132. Kamihara J, Rana HQ, Garber JE (2014) Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome. Hum Mutat 35(6):654–662

    Article  CAS  PubMed  Google Scholar 

  133. Villani A et al (2011) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 12(6):559–567

    Article  CAS  PubMed  Google Scholar 

  134. Ngeow J, Eng C (2015) PTEN hamartoma tumor syndrome: clinical risk assessment and management protocol. Methods 77–78:11–19

    Article  PubMed  CAS  Google Scholar 

  135. Ngeow J, Sesock K, Eng C (2015) Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat

    Google Scholar 

  136. Syngal S et al (2015) ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 110(2):223–262. quiz 263

    Article  PubMed  PubMed Central  Google Scholar 

  137. Couch FJ et al (2013) Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet 9(3):e1003212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy E. Garber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Gouvea, A.C.R.C., Garber, J.E. (2017). Breast Cancer Genetics. In: Veronesi, U., Goldhirsch, A., Veronesi, P., Gentilini, O., Leonardi, M. (eds) Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48848-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48848-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48846-2

  • Online ISBN: 978-3-319-48848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics