Skip to main content

One-Step Systemic Staging for Patients with Breast Cancer

  • Chapter
  • First Online:
Breast Cancer

Abstract

Despite advances in the treatment of primary breast cancer, metastatic spread of the disease remains a substantial clinical burden. Nearly 30% of breast cancer patients already have tumour spread to regional lymph nodes at diagnosis, and 5% will have metastases at presentation [1]. The prevalence of metastatic disease has increased along with the duration of survival, with some 20% of patients developing metastases during the course of the disease [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Cancer Institute. SEER fact sheet for breast cancer

    Google Scholar 

  2. American Cancer Society (2013) Breast cancer facts and figures. Internet

    Google Scholar 

  3. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28(20):3271–3277

    Article  PubMed  Google Scholar 

  4. Ibrahim T (2013) A new emergency in oncology: bone metastases in breast cancer patients (Review). Oncol Lett 6(2):306–310. doi:10.3892/ol.2013.1372

    PubMed  PubMed Central  Google Scholar 

  5. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20):6243s–6249s

    Article  PubMed  Google Scholar 

  6. Cella DF, Tulsky DS, Gray G et al (1993) The functional assessment of cancer therapy scale: development and validation of the general measure. J Clin Oncol 11(3):570–579

    Article  CAS  PubMed  Google Scholar 

  7. Chuthapisith S, Eremin JM, Eremin O (2008) Predicting response to neoadjuvant chemotherapy in breast cancer: molecular imaging, systemic biomarkers and the cancer metabolome (Review). Oncol Rep 20(4):699–703

    PubMed  Google Scholar 

  8. Tampellini M, Berruti A, Bitossi R et al (2006) Prognostic significance of changes in CA 15-3 serum levels during chemotherapy in metastatic breast cancer patients. Breast Cancer Res Treat 98(3):241–248

    Article  CAS  PubMed  Google Scholar 

  9. Duffy MJ, Evoy D, McDermott EW (2010) CA 15-3: uses and limitation as a biomarker for breast cancer. Clin Chim Acta 411(23–24):1869–1874

    Article  CAS  PubMed  Google Scholar 

  10. Brown JE, Cook RJ, Lipton A et al (2010) Prognostic factors for skeletal complications from metastatic bone disease in breast cancer. Breast Cancer Res Treat 123(3):767–779

    Article  PubMed  Google Scholar 

  11. Lipton A, Cook R, Saad F et al (2008) Normalization of bone markers is associated with improved survival in patients with bone metastases from solid tumors and elevated bone resorption receiving zoledronic acid. Cancer 113(1):193–201

    Article  CAS  PubMed  Google Scholar 

  12. Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  CAS  PubMed  Google Scholar 

  13. Budd GT, Cristofanilli M, Ellis MJ et al (2006) Circulating tumor cells versus imaging—predicting overall survival in metastatic breast cancer. Clin Cancer Res 12(21):6403–6409

    Article  CAS  PubMed  Google Scholar 

  14. Smerage JB, Barlow WE, Hortobagyi GN et al (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol 32(31):3483–3489. doi:10.1200/JCO.2014.56.2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dawson S-J, Tsui DWY, Murtaza M et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209

    Article  CAS  PubMed  Google Scholar 

  16. Cardoso F, Costa A, Norton L et al (2012) 1st International consensus guidelines for advanced breast cancer (ABC 1). Breast 21(3):242–252

    Article  CAS  PubMed  Google Scholar 

  17. Buscombe JR, Holloway B, Roche N, Bombardieri E (2004) Position of nuclear medicine modalities in the diagnostic work-up of breast cancer. Q J Nucl Med Mol Imaging 48(2):109–118

    CAS  PubMed  Google Scholar 

  18. Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46(8):1356–1367

    PubMed  Google Scholar 

  19. Ben-Haim S, Israel O (2009) Breast cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39(6):408–415

    Article  PubMed  Google Scholar 

  20. Brenner AI, Koshy J, Morey J et al (2012) The bone scan. Semin Nucl Med 42(1):11–26

    Article  PubMed  Google Scholar 

  21. Vogel CL, Schoenfelder J, Shemano I et al (1995) Worsening bone scan in the evaluation of antitumor response during hormonal therapy of breast cancer. J Clin Oncol 13(5):1123–1128

    Article  CAS  PubMed  Google Scholar 

  22. National Institute for Health and Clinical Excellence (NICE) (2009) Advanced breast cancer

    Google Scholar 

  23. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  24. Hamaoka T, Costelloe CM, Madewell JE et al (2010) Tumour response interpretation with new tumour response criteria vs the World Health Organisation criteria in patients with bone-only metastatic breast cancer. Br J Cancer 102(4):651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Torigian DA, Huang SS, Houseni M, Alavi A (2007) Functional imaging of cancer with emphasis on molecular techniques. CA Cancer J Clin 57(4):206–224

    Article  PubMed  Google Scholar 

  26. Iagaru A, Mittra E, Mosci C et al (2013) Combined 18F-Fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med 54(2):176–183

    Article  CAS  PubMed  Google Scholar 

  27. Yang H-L, Liu T, Wang X-M et al (2011) Diagnosis of bone metastases: a metaanalysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 21(12):2604–2617

    Article  PubMed  Google Scholar 

  28. Lin NU, Thomssen C, Cardoso F et al (2013) International guidelines for management of metastatic breast cancer (MBC) from the European School of Oncology (ESO)-MBC Task Force: surveillance, staging, and evaluation of patients with early-stage and metastatic breast cancer. Breast 22(3):203–210

    Article  PubMed  Google Scholar 

  29. Dehdashti F, Flanagan FL, Mortimer JE et al (1999) Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26(1):51–56

    Article  CAS  PubMed  Google Scholar 

  30. Mortimer JE, Dehdashti F, Siegel BA et al (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19(11):2797–2803

    Article  CAS  PubMed  Google Scholar 

  31. Xu GZ, Li CY, Zhao L, He ZY (2012) Comparison of FDG whole-body PET/CT and gadolinium-enhanced whole-body MRI for distant malignancies in patients with malignant tumors: a meta-analysis. Ann Oncol 24(1):96–101

    Article  PubMed  Google Scholar 

  32. Li B, Li Q, Nie W, Liu S (2014) Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a meta-analysis. Eur J Radiol 83(2):338–344

    Article  PubMed  Google Scholar 

  33. Lecouvet FE, Larbi A, Pasoglou V et al (2013) MRI for response assessment in metastatic bone disease. Eur Radiol 23(7):1986–1997

    Article  CAS  PubMed  Google Scholar 

  34. Ollivier L (2006) Improving the interpretation of bone marrow imaging in cancer patients. Cancer Imaging 6(1):194–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22(4):275–282

    PubMed  Google Scholar 

  36. Kwee TC, Takahara T, Ochiai R et al (2009) Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol 70(3):409–417

    Article  PubMed  Google Scholar 

  37. Padhani AR, Gogbashian A (2011) Bony metastases: assessing response to therapy with whole-body diffusion MRI. Cancer Imaging 11(1A):S129–S154

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yankeelov TE, Arlinghaus LR, Li X, Gore JC (2011) The role of magnetic resonance imaging biomarkers in clinical trials of treatment response in cancer. Semin Oncol 38(1):16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koh DM, Blackledge M, Padhani AR et al (2012) Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. Am J Roentgenol 199(2):252–262

    Article  Google Scholar 

  40. Wu L-M, Gu H-Y, Zheng J et al (2011) Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. J Magn Reson Imaging 34(1):128–135

    Article  PubMed  Google Scholar 

  41. Kwee TC, Takahara T, Niwa T (2010) Diffusion-weighted whole-body imaging with background body signal suppression facilitates detection and evaluation of an anterior rib contusion. Clin Imaging 34:298–301

    Article  PubMed  Google Scholar 

  42. Messiou C, Collins DJ, Morgan VA, Desouza NM (2011) Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. Eur Radiol 21:1713–1718

    Article  CAS  PubMed  Google Scholar 

  43. Eiber M, Holzapfel K, Ganter C et al (2011) Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging 33:1160–1170

    Article  PubMed  Google Scholar 

  44. Bin L, Qiong L, Wei N, Shiyuan L (2014) Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a meta-analysis. Eur J Radiol 83(2):338–344

    Article  Google Scholar 

  45. Hardie AD, Naik M, Hecht EM, Chandarana H, Mannelli L, Babb JS, Taouli B (2010) Diagnosis of liver metastases: value of diffusion-weighted MRI compared with gadolinium-enhanced MRI. Eur Radiol 20(6):1431–1441

    Article  PubMed  Google Scholar 

  46. Kwast AB et al (2012) Histological type is not an independent prognostic factor for the risk pattern of breast cancer recurrences. Breast Cancer Res Treat 135(1):271–280

    Article  PubMed  Google Scholar 

  47. Montagna E, Peccatori F, Petralia G, Tomasi Cont N, Iorfida M, Colleoni M (2014) Whole-body magnetic resonance imaging, metastatic breast cancer and pregnancy: a case report. Breast 23(3):295–296

    Article  CAS  PubMed  Google Scholar 

  48. Oto A, Ernst R, Jesse MK, Chaljub G, Saade G (2007) Magnetic resonance imaging of the chest, abdomen, and pelvis in the evaluation of pregnant patients with neoplasms. Am J Perinatol 24(4):243–250

    Article  PubMed  Google Scholar 

  49. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  CAS  PubMed  Google Scholar 

  50. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270(3):834–841

    Article  PubMed  Google Scholar 

  51. Padhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS (2014) Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging 39:1049–1078

    Article  PubMed  Google Scholar 

  52. Messiou C, Collins DJ, Giles S, et al (2011) Assessing response in bone metastases in prostate cancer with diffusion MRI. In Proceedings of 19th annual meeting ISMRM, Montreal, p 336

    Google Scholar 

  53. Padhani AR, Koh DM (2011) Diffusion MR imaging for monitoring of treatment response. Magn Reson Imaging Clin N Am 19:181–209

    Article  PubMed  Google Scholar 

  54. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  CAS  PubMed  Google Scholar 

  55. Messiou C, Collins DJ, Giles S, de Bono JS, Bianchini D, de Souza NM (2011) Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol 10:2169–2177

    Article  Google Scholar 

  56. Hillengass J, Bauerle T, Bartl R et al (2011) Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol 153:721–728

    Article  PubMed  Google Scholar 

  57. Chan JH, Peh WC, Tsui EY et al (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 75:207–214

    Article  CAS  PubMed  Google Scholar 

  58. Padhani AR, Van Ree K, Collins DL, D’Sa S, Makris A (2013) Assessing the relationship between bone marrow signal intensity and apparent diffusion coefficient on diffusion weighted MRI. Am J Roentgenol 200(1):163–170

    Article  Google Scholar 

  59. Chen WT, Shih TT, Chen RC et al (2002) Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging 15:308–314

    Article  PubMed  Google Scholar 

  60. Pui MH, Mitha A, Rae WI, Corr P (2005) Diffusion-weighted magnetic resonance imaging of spinal infection and malignancy. J Neuroimaging 15:164–170

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the valuable contribution of Fabio Zugni (MD) in writing, literature search and figures editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Petralia M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petralia, G., Padhani, A.R. (2017). One-Step Systemic Staging for Patients with Breast Cancer. In: Veronesi, U., Goldhirsch, A., Veronesi, P., Gentilini, O., Leonardi, M. (eds) Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48848-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48848-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48846-2

  • Online ISBN: 978-3-319-48848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics