Skip to main content

Nuclear Medicine in the Clinical Management (ROLL, SNB, and PET)

  • Chapter
  • First Online:
Breast Cancer

Abstract

The most important goal of modern surgical oncology is to utilize the less aggressive methods while maintaining radicalism. The evolution of imaging techniques and the option of using screening tests more and more reliable and effective have permitted an increasingly early diagnosis, identifying malignant lesions of ever smaller dimensions. This is particularly common in the case of breast cancer, where clinically occult lesions are diagnosed with increasing frequency, now represents approximately 25–35% of all breast cancers diagnosed in developed countries [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franceschi D, Crowe J, Zollinger R, Duchesneau R, Shenk R, Stefanek G, Shuck JM (1990) Biopsy of the breast for mammographically detected lesions. Surg Gynecol Obstet 171(6):449–455

    CAS  PubMed  Google Scholar 

  2. Goedde TA, Frykberg ER, Crump JM, Lay SF, Turetsky DB, Linden SS (1992) The impact of mammography on breast biopsy. Am Surg 58(11):661–666

    CAS  PubMed  Google Scholar 

  3. Querci della Rovere G (1996) Localization of impalpable breast lesions. A surgical approach. Eur J Surg Oncol 22:478–482

    Article  Google Scholar 

  4. Silverstein MJ, Gamagami P, Rosser RJ, Gierson ED, Colburn WJ, Handel N et al (1987) Hooked-wire directed breast biopsy and overpenetrated mammography. Cancer 59:715–722

    Article  CAS  PubMed  Google Scholar 

  5. Besic N, Zgajnar J, Hocevar M, Gierson ED, Colburn WJ, Handel N et al (2002) Breast biopsy with wire localization: factors influencing complete excision of nonpalpable carcinoma. Eur Radiol 12:2684–2689

    Article  CAS  PubMed  Google Scholar 

  6. Davis PS, Wechsler RJ, Feig SA (1983) Migration of breast biopsy localization wire. Am J Radiol 141:929–930

    Google Scholar 

  7. Homer MJ (1983) Transection of the localization wire hooked During breast biopsy. Am J Roentgenol 141:929–930

    Article  CAS  Google Scholar 

  8. Tykka H, Castren-Person M, Sjoblom M (1993) Pneumothorax Caused by hooked wire localization of an impalpable breast lesion detected by mammography. Breast 2:52–53

    Article  Google Scholar 

  9. Luini A, Zurrida S, Galimberti V, Paganelli G (1998) Radioguided surgery of occult breast lesions. Eur J Cancer 34(1):204–205

    Article  CAS  PubMed  Google Scholar 

  10. De Cicco C, Pizzamiglio M, Trifirò G, Luini A, Ferrari M, Prisco G, Galimberti V, Cassano E, Viale G, Intra M, Veronesi P, Paganelli G (2002) Radioguided occult lesion localization (ROLL) and surgical biopsy in breast cancer. Technical aspects. Q J Nucl Med 46:145–151

    PubMed  Google Scholar 

  11. Paganelli G, Luini A, Veronesi U (2002) Radioguided occult lesion localization (ROLL) in breast cancer: maximizing efficacy, minimizing mutilation. Ann Oncol 13:1839–1840

    Article  CAS  PubMed  Google Scholar 

  12. Monti S, Galimberti V, Trifiro G, De Cicco C, Peradze N, Brenelli F, Fernandez-Rodriguez J, Rotmensz N, Latronico A, Berrettini A et al (2007) Occult breast lesion localization plus sentinel node biopsy (SNOLL): experience with 959 patients at the European Institute of Oncology. Ann Surg Oncol 14(10):2928–2931

    Article  PubMed  Google Scholar 

  13. Postma EL, Koffijberg H, Verkooijen HM, Witkamp AJ, van den Bosch MA, van Hillegersberg R (2013) Cost-effectiveness of radioguided occult lesion localization (ROLL) versus wire-guided localization (WGL) in breast conserving surgery for nonpalpable breast cancer: results from a randomized controlled multicenter trial. Ann Surg Oncol 20(7):2219–2226

    Article  CAS  PubMed  Google Scholar 

  14. Veronesi U, Luini A, Botteri E, Zurrida S, Monti S, Galimberti V, Cassano E, Latronico A, Pizzamiglio M, Viale G, Vezzoli D, Rotmensz N, Musmeci S, Bassi F, Burgoa L, Maisonneuve P, Paganelli G, Veronesi P (2010) Nonpalpable breast carcinomas: long-term evaluation of 1,258 cases. Oncologist 15(12):1248–1252

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lovrics PJ, Cornacchi SD, Vora R, Goldsmith CH, Kahnamoui K (2011) Systematic review of radioguided surgery for non-palpable breast cancer. EJSO 37:388–397

    Article  CAS  PubMed  Google Scholar 

  16. Postma EL, Verkooijen HM, van Esser S et al (2012) Efficacy of ‘radioguided occult lesion localisation’ (ROLL) versus ‘wireguided localisation’ (WGL) in breast conserving surgery for nonpalpable breast cancer: a randomised controlled multicentre trial. Breast Cancer Res Treat 136:469–478

    Article  CAS  PubMed  Google Scholar 

  17. Paganelli G, Gilardi L, Veronesi U (2013) Improper use of “radioguided occult lesion localization” (ROLL) technique leads to misleading conclusions. Breast Cancer Res Treat 139:287–290

    Article  PubMed  Google Scholar 

  18. van der Noordaa ME, Pengel KE, Groen E, van Werkhoven E, Rutgers EJ, Loo CE, Vogel W, Vrancken Peeters MJ (2015) The use of radioactive iodine-125 seed localization in patients with non-palpable breast cancer: a comparison with the radioguided occult lesion localization with 99m technetium. Eur J Surg Oncol 41(4):553–558

    Article  PubMed  Google Scholar 

  19. Chan BK, Wiseberg-Firtell JA, Jois RH, Jensen K, Audisio RA (2015) Localization techniques for guided surgical excision of non-palpable breast lesions. Cochrane Database Syst Rev 12:CD009206. doi:10.1002/14651858.CD009206.pub2

    Google Scholar 

  20. Kay Jamieson J, Dobson JF (1907) On the lymphatic system of the stomach. Lancet 169(4364):1061–1066

    Article  Google Scholar 

  21. Gould EA, Winship T, Philbin PH, Kerr HH (1960) Observations on a “sentinel node” in cancer of the parotid. Cancer 13:77–78

    Article  CAS  PubMed  Google Scholar 

  22. Cabanas RM (1977) An approach for the treatment of penile carcinoma. Cancer 39(2):456–466

    Article  CAS  PubMed  Google Scholar 

  23. Eshima D, Fauconnier T, Eshima L, Thornback JR (2000) Radiopharmaceuticals for lymphoscintigraphy: including dosimetry and radiation considerations. Semin Nucl Med 30:25–32

    Article  CAS  PubMed  Google Scholar 

  24. De Cicco C, Cremonesi M, Luini A, Bartolomei M, Grana C, Prisco G, Galimberti V, Calza P, Viale G, Veronesi U, Paganelli G (1998) Lymphoscintigraphy and radioguided biopsy of the sentinel axillary node in breast cancer. J Nucl Med 39:2080–2084

    PubMed  Google Scholar 

  25. Henze E, Schelbert HR, Collins JD et al (1982) Lymphoscintigraphy with 99mTc-labeled dextran. J Nucl Med 23:923–929

    CAS  PubMed  Google Scholar 

  26. Alex JC, Weaver DL, Fairbank JT, Rankin BS, Krag DN (1993) Gamma-probe-guided lymph node localization in malignant melanoma. Surg Oncol 2(5):303–308

    Article  CAS  PubMed  Google Scholar 

  27. Veronesi U, Paganelli G, Galimberti V, Viale G, Zurrida S, Bedoni M, Costa A, De Cicco C, Geraghty JG, Luini A, Sacchini V, Veronesi P (1997) Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet 349:1864–1867

    Article  CAS  PubMed  Google Scholar 

  28. Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V et al (2003) A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med 349:546–553

    Article  PubMed  Google Scholar 

  29. White RL, Wilke LG (2004) Update on the NSABP and ACOSOG breast cancer sentinel node trials. Am Surg 70(5):420–424

    PubMed  Google Scholar 

  30. Krag DN, Julian TB, Harlow SP, Weaver DL, Ashikaga T, Bryant J et al (2003) NSABP-32: phase III, randomized trial comparing axillary resection with sentinel lymph node dissection: a description of the trial. Ann Surg Oncol 11(3):208S–210S

    Google Scholar 

  31. Bergqvist L, Stundberg R, Ryden S, Strand S-E (1987) The “critical colloid dose” in studies of reticuloendothelial function. J Nucl Med 28:1424–1429

    CAS  PubMed  Google Scholar 

  32. Strand SE, Bergqvist L (1989) Radiolabeled colloids and macromolecules in the lymphatic system. Crit Rev Ther Drug Carrier Syst 6:211–218

    CAS  PubMed  Google Scholar 

  33. Tsopelas C (2001) Particles size analysis of 99mTc-labeled and unlabeled antimony trisulfide and rhenium sulfide colloids intended for lymphoscintigraphic application. J Nucl Med 42:460–466

    CAS  PubMed  Google Scholar 

  34. Povoski SP, Olsen JO, Young DC, Clarke J, Burak WE, Walker MJ et al (2006) Prospective randomized clinical trial comparing intradermal, intraparenchymal, and subareolar injection routes for sentinel lymph node mapping and biopsy in breast cancer. Ann Surg Oncol 13:1412–1421

    Article  PubMed  Google Scholar 

  35. Rodier JF, Velten M, Wilt M, Martel P, Ferron G, Vaini-Elies V et al (2007) Prospective multicentric randomized study comparing periareolar and peritumoral injection of radiotracer and blue dye for the detection of sentinel lymph node in breast sparing procedures: FRANSENODE trial. J Clin Oncol 25:3664–3669

    Article  PubMed  Google Scholar 

  36. Noguchi M, Inokuchi M, Zen Y (2009) Complement of peritumoral and subareolar injection in breast cancer sentinel lymph node biopsy. J Surg Oncol 100:100–105

    Article  PubMed  Google Scholar 

  37. Argon AM, Duygun U, Acar E, Daglioz G, Yenjay L, Zekioglu O et al (2006) The use of periareolar intradermal Tc-99m tin colloid and peritumoral intraparenchymal isosulfan blue dye injections for determination of the sentinel lymph node. Clin Nucl Med 31:795–800

    Article  PubMed  Google Scholar 

  38. Suami H, Pan WR, Mann GB, Taylor GI (2008) The lymphatic anatomy of the breast and its implications for sentinel lymph node biopsy: a human cadaver study. Ann Surg Oncol 15:863–871

    Article  PubMed  Google Scholar 

  39. Gentilini O, Trifirò G, Soteldo J, Luini A, Intra M, Galimberti V, Veronesi P, Silva L, Gandini S, Paganelli G, Veronesi U (2006) Sentinel lymph node biopsy in multicentric breast cancer. The experience of the European Institute of Oncology. Eur J Surg Oncol 32(5):507–510

    Article  CAS  PubMed  Google Scholar 

  40. van der Ploeg IMC, Valdes Olmos RA, Kroon BB, Nieweg OE (2008) The hybrid SPECT/CT as an additional lymphatic mapping tool in patients with breast cancer. World J Surg 32:1930–1934

    Article  PubMed  PubMed Central  Google Scholar 

  41. Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E, Grant SF, Kunikowska J, Leidenius M, Moncayo VM, Uren RF, Oyen WJG, Valdés Olmos RA, Sicart SV (2013) The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging 40:1932–1947

    Article  CAS  PubMed  Google Scholar 

  42. Kaufmann M, Morrow M, von Minckwitz G, Harris JR, Biedenkopf Expert Panel Members (2010) Locoregional treatment of primary breast cancer: consensus recommendations from an International Expert Panel. Cancer 116:1184–1191

    Article  PubMed  Google Scholar 

  43. National Comprehensive Cancer Network (NCCN) (2014) NCCN Clinical Practice Guidelines in Oncology Breast Cancer. Version 1. 2014

    Google Scholar 

  44. Galimberti V, Cole BF, Zurrida S et al (2013) Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): a phase 3 randomised controlled trial. Lancet Oncol 14:297–305

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ, and the Panel members (2011) Panel members. Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St. Gallen International expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22:1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zujewski J, Eng-Wong J (2005) Sentinel lymph node biopsy in the management of ductal carcinoma in situ. Clin Breast Cancer 6:216–222

    Article  PubMed  Google Scholar 

  47. Intra M, Rotmensz N, Veronesi P, Colleoni M, Iodice S, Paganelli G et al (2008) Sentinel node biopsy is not a standard procedure in ductal carcinoma in situ of the breast: the experience of the European Institute of Oncology on 854 patients in 10 years. Ann Surg 247:315–319

    Article  PubMed  Google Scholar 

  48. Taback B, Nguyen P, Hansen N, Edwards GK, Conway K, Giuliano AE (2006) Sentinel lymph node biopsy for local recurrence of breast cancer after breast-conserving therapy. Ann Surg Oncol 13:1099–1104

    Article  PubMed  Google Scholar 

  49. Port ER, Garcia-Etienne CA, Park J et al (2007) Reoperative sentinel lymph node biopsy: a new frontier in the management of ipsilateral breast tumor recurrence. Ann Surg Oncol 14:2209–2214

    Article  PubMed  Google Scholar 

  50. Kaur P, Kiluk JV, Meade T et al (2011) Sentinel lymph node biopsy in patients with previous ipsilateral complete axillary lymph node dissection. Ann Surg Oncol 18:727–732

    Article  PubMed  Google Scholar 

  51. Gentilini O, Cremonesi M, Trifirò G et al (2004) Safety of sentinel node biopsy in pregnant patients with breast cancer. Ann Oncol 15:1348–1351

    Article  CAS  PubMed  Google Scholar 

  52. Mondi MM, Cuenca RE, Ollila DW et al (2007) Sentinel lymph node biopsy during pregnancy: initial clinical experience. Ann Surg Oncol 14:218–221

    Article  PubMed  Google Scholar 

  53. Steenvoorde P, Pauwels EK, Harding LK et al (1998) Diagnostic nuclear medicine and risk for the fetus. Eur J Nucl Med 25:193–199

    Article  CAS  PubMed  Google Scholar 

  54. Donegan WL (1977) The influence of untreated internal mammary metastases upon the course of mammary cancer. Cancer 39:533–538

    Article  CAS  PubMed  Google Scholar 

  55. Cody HS III, Urban JA (1995) Internal mammary node status: a major prognosticator in axillary node-negative breast cancer. Ann Surg Oncol 2:32–37

    Article  PubMed  Google Scholar 

  56. Sugg SL, Ferguson DJ, Posner MC et al (2000) Should internal mammary nodes be sampled in the sentinel lymph node era? Ann Surg Oncol 7:188–192

    Article  CAS  PubMed  Google Scholar 

  57. Veronesi U, Cascinelli N, Bufalino R, Morabito A, Greco M, Galluzzo D, Delle Donne V, De Lellis R, Piotti P, Sacchini V et al (1983) Risk of internal mammary lymph node metastases and its relevance on prognosis of breast cancer patients. Ann Surg 198(6):681–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paganelli G, Galimberti V, Trifirò G, Travaini L, De Cicco C, Mazzarol G, Intra M, Rocca P, Prisco G, Veronesi U (2002) Internal mammary node lymphoscintigraphy and biopsy in breast cancer. Q J Nucl Med 46:138–144

    CAS  PubMed  Google Scholar 

  59. Veronesi U, Marubini E, Mariani L, Valagussa P, Zucali R (1999) The dissection of internal mammary nodes does not improve the survival of breast cancer patients. 30-year results of a randomised trial. Eur J Cancer 35:1320–1325

    Article  CAS  PubMed  Google Scholar 

  60. Leidenius MH, Krogerus LA, Toivonen TS, Leppänen EA, von Smitten KA (2006) The clinical value of parasternal sentinel node biopsy in breast cancer. Ann Surg Oncol 13:321–326

    Article  PubMed  Google Scholar 

  61. Ahmed M, Douek M (2013) Sentinel node and occult lesion localization (SNOLL): a systematic review. Breast 22:1034–1040

    Article  CAS  PubMed  Google Scholar 

  62. Rescigno J, Zampell JC, Axelrod D (2009) Patterns of axillary surgical care for breast cancer in the era of sentinel lymph node biopsy. Ann Surg Oncol 16:687–696

    Article  PubMed  Google Scholar 

  63. Leong SP, Shen ZZ, Liu TJ et al (2010) Is breast cancer the same disease in Asian and Western countries? World J Surg 34:2308–2324

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ahmed M, Purushotham AD, Douek M (2014) Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol 15:351–362

    Article  Google Scholar 

  65. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–662

    Google Scholar 

  66. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CF. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002;20(2):379–387

    Google Scholar 

  67. Norum J, Andreassen T (2000) Screening for metastatic disease in newly diagnosed breast cancer patients. What is cost-effective? Anticancer Res 20:2193–2196

    CAS  PubMed  Google Scholar 

  68. Avril N, Schelling M, Dose J, Weber WA, Schwaiger M (1999) Utility of PET in Breast Cancer. Clin Positron Imaging 2(5):261–271

    Article  PubMed  Google Scholar 

  69. Buscombe JR, Holloway B, Roche N, Bombardieri E (2004) Position of nuclear medicine modalities in the diagnostic work-up of breast cancer. Q J Nucl Med Mol Imaging 48(2):109–118

    CAS  PubMed  Google Scholar 

  70. Cermik TF, Mavi A, Basu S, Alavi A (2008) Impact of FDG PET on the preoperative staging of newly diagnosed breast cancer. Eur J Nucl Med Mol Imaging 35:475–483

    Article  PubMed  Google Scholar 

  71. Avril N, Rose CA, Schelling M, Dose J, Kuhn W, Bense S et al (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 18:3495–3502

    Article  CAS  PubMed  Google Scholar 

  72. Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F et al (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 42:9–16

    CAS  PubMed  Google Scholar 

  73. Sanli Y, Kuyumcu S, Ozkan ZG, Işık G, Karanlik H, Guzelbey B et al (2012) Increased FDG uptake in breast cancer is associated with prognostic factors. Ann Nucl Med 26:345–350

    Article  CAS  PubMed  Google Scholar 

  74. Kim BS, Sung SH (2012) Usefulness of 18F-FDG uptake with clinicopathologic and immunohistochemical prognostic factors in breast cancer. Ann Nucl Med 26:175–183

    Article  CAS  PubMed  Google Scholar 

  75. Ueda S, Tsuda H, Asakawa H, Shigekawa T, Fukatsu K, Kondo N et al (2008) Clinicopathological and prognostic relevance of uptake level using 18F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in primary breast cancer. Jpn J Clin Oncol 38:250–258

    Article  PubMed  Google Scholar 

  76. Koo HR, Park JS, Kang KW, Cho N, Chang JM, Bae MS, Kim WH, Lee SH, Kim MY, Kim JY, Seo M (2014) Moon WK 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes. Eur Radiol 24(3):610–618

    Article  PubMed  Google Scholar 

  77. Kitajima K, Fukushima K, Miyoshi Y, Nishimukai A, Hirota S, Igarashi Y, Katsuura T, Maruyama K, Hirota S (2015) Association between 18F-FDG uptake and molecular subtype of breast cancer. Eur J Nucl Med Mol Imaging 42(9):1371–1377

    Article  CAS  PubMed  Google Scholar 

  78. Eo JS, Chun IK, Paeng JC, Kang KW, Lee SM, Han W, Noh DY, Chung JK, Lee DS (2012) Imaging sensitivity of dedicated positron emission mammography in relation to tumor size. Breast 21(1):66–71

    Article  PubMed  Google Scholar 

  79. Weinberg IN (2006) Applications for positron emission mammography. Phys Med 21(Suppl 1):132–137

    Article  PubMed  Google Scholar 

  80. Veronesi U, De Cicco C, Galimberti E, Fernandez JR, Rotmensz N, Viale G et al (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18:473–478

    Article  CAS  PubMed  Google Scholar 

  81. Wahl R, Siegel BA, Coleman RE, Gatsonis CG (2004) Prospective multicenter study of axillary nodal staging by Positron Emission Tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol 22:277–285

    Article  PubMed  Google Scholar 

  82. Monzawa S, Adachi S, Suzuki K, Hirokaga K, Takao S, Sakuma T et al (2009) Diagnostic performance of fluorodeoxyglucose- positron emission tomography/computed tomography of breast cancer in detecting axillary lymph node metastasis: comparison with ultrasonography and contrast-enhanced CT. Ann Nucl Med 23:855–861

    Article  PubMed  Google Scholar 

  83. Kumar R, Zhuang H, Schnall M, Conant E, Damia S, Weinstein S et al (2006) FDG PET positive lymph nodes are highly predictive of metastases in breast cancer. Nucl Med Commun 27:231–236

    Article  PubMed  Google Scholar 

  84. Vinh-Hung V, Everaert H, Lamote J, Voordeckers M, van Parijs H, Vanhoeij M et al (2012) Diagnostic and prognostic correlates of preoperative FDG PET for breast cancer. Eur J Nucl Med Mol Imaging 39(10):1618–1627

    Article  PubMed  Google Scholar 

  85. Mahner S, Schirrmacher S, Brenner W, Jenicke L, Habermann CR, Avril N et al (2008) Comparison between positron emission tomography using 2-[fluorine-18]fluoro-2-deoxy-D-glucose, conventional imaging and computed tomography for staging of breast cancer. Ann Oncol 19:1249–1254

    Article  CAS  PubMed  Google Scholar 

  86. Ng SP, David S, Alamgeer M, Ganju V (2015) Impact of pretreatment combined (18)F-fluorodeoxyglucose positron emission tomography/computed tomography staging on radiation therapy treatment decisions in locally advanced breast cancer. Int J Radiat Oncol Biol Phys 93:111–117

    Article  PubMed  Google Scholar 

  87. Koolen BB, Vrancken Peeters M-JTFD, Aukema TS, Vogel WV, Oldenburg HAS, van der Hage JA et al (2012) 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: comparison with conventional imaging techniques. Breast Cancer Res Treat 131:117–126

    Article  PubMed  Google Scholar 

  88. Segaert I, Mottaghy F, Ceyssens S, De Wever W, Stroobants S, Van Ongeval C et al (2010) Additional value of PET-CT in staging of clinical stage IIB and III breast cancer. Breast J 6:617–624

    Article  Google Scholar 

  89. Fuster D, Duch J, Paredes P, Velasco M, Muñoz M, Santamaria G et al (2008) Preoperative staging of large primary breast cancer with [18F] fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol 26:4746–4751

    Article  PubMed  Google Scholar 

  90. Groheux D, Giacchetti S, Espié M, Vercellino L, Hamy A-S, Delord M et al (2011) The yield of 18F-FDG PET/CT in patients with clinical stage IIA, IIB, or IIIA breast cancer: a prospective study. J Nucl Med 52:1526–1534

    Article  CAS  PubMed  Google Scholar 

  91. Bernsdorf M, Berthelsen AK, Wielenga VT, Kroman N, Teilum D, Binderup T et al (2012) Preoperative PET/CT in early stage breast cancer. Ann Oncol 23(9):2277–2282

    Article  CAS  PubMed  Google Scholar 

  92. Aukema TS, Straver ME, Vrancken Peeters M-JTFD, Russell NS, Gilhuijs KGA, Vogel WV et al (2010) Detection of extra-axillary lymph node involvement with FDG PET/CT in patients with stage II-III breast cancer. Eur J Cancer 46:3205–3210

    Article  PubMed  Google Scholar 

  93. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, Pruim J, Price P (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35(13):1773–1782

    Article  CAS  PubMed  Google Scholar 

  94. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peterson JJ, Kransdorf MJ, O’Connor MI (2003) Diagnosis of occult bone metastases: positron emission tomography. Clin Orthop Relat Res 415(Suppl):S120–S128

    Article  Google Scholar 

  96. Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, Nasu S, Suzuki Y, Yasuda S, Shohtsu A (2001) Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun 22(8):875–879

    Article  CAS  PubMed  Google Scholar 

  97. Morris PG, Lynch C, Feeney JN, Patil S, Howard J, Larson SM, Dickler M, Hudis CA, Jochelson M, McArthur HL (2010) Integrated positron emission tomography/computed tomography may render bone scintigraphy unnecessary to investigate suspected metastatic breast cancer. J Clin Oncol 28(19):3154–3159

    Article  PubMed  PubMed Central  Google Scholar 

  98. Avril N, Sassen S, Roylance R (2009) Response to therapy in breast cancer. J Nucl Med 50(suppl 1):55S–63S

    Article  CAS  PubMed  Google Scholar 

  99. Du Y, Cullum I, Illidge TM, Ell PJ (2007) Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 25(23):3440–3447

    Article  PubMed  Google Scholar 

  100. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  101. Hamaoka T, Madewell JE, Podoloff DA et al (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22:2942–2953

    Article  PubMed  Google Scholar 

  102. Schneider JA, Divgi CR, Scott AM et al (1994) Flare on bone scintigraphy following Taxol chemotherapy for metastatic breast cancer. J Nucl Med 35:1748–1752

    CAS  PubMed  Google Scholar 

  103. Huyge V, Garcia C, Alexiou J, Ameye L, Vanderlinden B, Lemort M, Bergmann P, Awada A, Body JJ, Flamen P (2010) Heterogeneity of metabolic response to systemic therapy in metastatic breast cancer patients. Clin Oncol (R Coll Radiol) 22(10):818–827

    Article  CAS  Google Scholar 

  104. Rousseau C, Devillers A, Campone M, Campion L, Ferrer L, Sagan C et al (2011) FDG PET evaluation of early axillary lymph node response to neoadjuvant chemotherapy in stage II and III breast cancer patients. Eur J Nucl Med Mol Imaging 38:1029–1036

    Article  CAS  PubMed  Google Scholar 

  105. Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L et al (2007) [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 34:1915–1924

    Article  CAS  PubMed  Google Scholar 

  106. Humbert O, Berriolo-Riedinger A, Riedinger JM, Coudert B, Arnould L, Cochet A et al (2012) Changes in 18F-FDG tumor metabolism after a first course of neoadjuvant chemotherapy in breast cancer: influence of tumor subtypes. Ann Oncol 23:2572–2577

    Article  CAS  PubMed  Google Scholar 

  107. Koolen BB, Pengel KE, Wesseling J, Vogel WV, Vrancken Peeters MJ, Vincent AD et al (2013) FDG PET/CT during neoadjuvant chemotherapy may predict response in ER-positive/HER2-negative and triple negative, but not in HER2-positive breast cancer. Breast 22:691–697

    Article  PubMed  Google Scholar 

  108. Grassetto G, Fornasiero A, Otello D, Bonciarelli G, Rossi E, Nashimben O, Minicozzi AM, Crepaldi G, Pasini F, Facci E, Mandoliti G, Marzola MC, Al-Nahhas A, Rubello D (2011) 18F-FDG-PET/CT in patients with breast cancer and rising Ca 15-3 with negative conventional imaging: a multicentre study. Eur J Radiol 80(3):828–833

    Article  PubMed  Google Scholar 

  109. Evangelista L, Baretta Z, Vinante L, Cervino AR, Gregianin M, Ghiotto C, Saladini G, Sotti G (2011) Tumour markers and FDG PET/CT for prediction of disease relapse in patients with breast cancer. Eur J Nucl Med Mol Imaging 38(2):293–301

    Article  CAS  PubMed  Google Scholar 

  110. Champion L, Brain E, Giraudet AL, Le Stanc E, Wartski M, Edeline V, Madar O, Bellet D, Pecking A, Alberini JL (2011) Breast cancer recurrence diagnosis suspected on tumor marker rising: value of whole-body 18FDG-PET/CT imaging and impact on patient management. Cancer 117(8):1621–1629

    Article  PubMed  Google Scholar 

  111. Cochet A, David S, Moodie K, Drummond E, Dutu G, MacManus M, Chua B, Hicks RJ (2014) The utility of 18 F-FDG PET/CT for suspected recurrent breast cancer: impact and prognostic stratification. Cancer Imaging 14:13

    PubMed  PubMed Central  Google Scholar 

  112. Chang HT, Hu C, Chiu YL, Peng NJ, Liu RS (2014) Role of 2-[18F] fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in the post-therapy surveillance of breast cancer. PLoS One 9(12):115–127

    Google Scholar 

  113. Aukema TS, Rutgers EJ, Vogel WV, Teertstra HJ, Oldenburg HS, Vrancken Peeters MT, Wesseling J, Russell NS, Valdés Olmos RA (2010) The role of FDG PET/CT in patients with locoregional breast cancer recurrence: a comparison to conventional imaging techniques. Eur J Surg Oncol 36(4):387–392

    Article  CAS  PubMed  Google Scholar 

  114. Vallabhajosula S (2007) (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37(6):400–419

    Article  PubMed  Google Scholar 

  115. Sundararajan L, Linden HM, Link JM, Krohn KA, Mankoff DA (2007) 18F-Fluoroestradiol. Semin Nucl Med 37:470–476

    Article  PubMed  Google Scholar 

  116. Baum RP, Prasad V, Müller D, Schuchardt C, Orlava A, Wennborg A et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled Affibody molecules. J Nucl Med 51:892–897

    Article  PubMed  Google Scholar 

  117. Dijkers EC, Oude Munnink TH, Kosterink JG, Browers AH, Jager PL, de Jong JR et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586–592

    Article  CAS  PubMed  Google Scholar 

  118. Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, Coombes RC, Aboagye EO (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res. 65(21):10104–10112

    Article  CAS  PubMed  Google Scholar 

  119. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347

    Article  PubMed  Google Scholar 

  120. Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, Czernin J, Phelps ME, Silverman DH (2006) Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8(1):36–42

    Article  PubMed  Google Scholar 

  121. Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S, Gown A, Link JM, Tewson T, Krohn KA (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49(3):367–374

    Article  PubMed  Google Scholar 

  122. Simmons C, Miller N, Geddie W, Gianfelice D, Oldfield M, Dranitsaris G et al (2009) Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann Oncol 20:1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sun Y, Yang Z, Zhang Y, Xue J, Wang M, Shi W, Zhu B, Hu S, Yao Z, Pan H, Zhang Y (2015) The preliminary study of 16α-[18F]fluoroestradiol PET/CT in assisting the individualized treatment decisions of breast cancer patients. PLoS One 10(1):e0116341. doi:10.1371/journal.pone.0116341

    Article  PubMed  PubMed Central  Google Scholar 

  124. van Kruchten M, Glaudemans AW, de Vries EF, Beets-Tan RG, Schröder CP, Dierckx RA, de Vries EG, Hospers GA (2012) PET imaging of estrogen receptors as a diagnostic tool for breast cancer patients presenting with a clinical dilemma. J Nucl Med 53(2):182–190

    Article  PubMed  CAS  Google Scholar 

  125. Linden HM, Stekhova SA, Link JM, Gralow JR, Livingston RB, Ellis GK et al (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24:2793–2799

    Article  CAS  PubMed  Google Scholar 

  126. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, Vanhoeij M, Duhoux FP, Gevaert T, Simon P, Schallier D, Fontaine C, Vaneycken I, Vanhove C, De Greve J, Lamote J, Caveliers V, Lahoutte T (2016) Phase I study of 68Ga-HER2-Nanobody for PET/CT assessment of HER2-expression in breast carcinoma. J Nucl Med 57(1):27–33. Oct 8. pii: jnumed.115.162024. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovanni Paganelli , G. Paganelli , G. Paganelli or G. Paganelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paganelli, G., Matteucci, F., Gilardi, L. (2017). Nuclear Medicine in the Clinical Management (ROLL, SNB, and PET). In: Veronesi, U., Goldhirsch, A., Veronesi, P., Gentilini, O., Leonardi, M. (eds) Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48848-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48848-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48846-2

  • Online ISBN: 978-3-319-48848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics