Skip to main content

Breast Cancer Genomics

  • Chapter
  • First Online:
Breast Cancer
  • 125k Accesses

Abstract

Recent large-scale next-generation sequencing studies defined the landscape of genomic aberrations in breast cancer. Copy number variations, missense mutations, and small insertion/deletions of certain genes can be associated with carcinogenesis and tumor progression. These so-called cancer drivers supposedly confer either growth advantages or protection from therapeutic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephens PJ et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Toy W et al (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45(12):1439–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dawson SJ et al (2013) A new genome-driven integrated classification of breast cancer and its implications. EMBO J 32(5):617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Curtis C et al (2012) The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486(7403):346–352

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hyman DM et al (2015) Neratinib for ERBB2 mutant, HER2 non-amplified, metastatic breast cancer: preliminary analysis from a multicenter, open-label, multi-histology phase II basket trial. San Antonio Breast Cancer Symposium. Abstract PD5-05

    Google Scholar 

  6. Hyman DM et al (2015) AZD5363, a catalytic pan-Akt inhibitor, in Akt1 E17K mutation positive advanced solid tumors. Mol Cancer Ther 12(Suppl. 2). Abstract nr B109

    Google Scholar 

  7. Cheng DT et al (2015) Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn 17(3):251–264

    Article  CAS  PubMed  Google Scholar 

  8. Won HH et al (2013) Detecting somatic genetic alterations in tumor specimens by exon capture and massively parallel sequencing. J Vis Exp 80:e50710

    Google Scholar 

  9. Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Overman MJ et al (2013) Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J Clin Oncol 31(1):17–22

    Article  PubMed  Google Scholar 

  11. Swanton C (2012) Intratumor heterogeneity: evolution through space and time. Cancer Res 72(19):4875–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Juric D et al (2015) Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature 518(7538):240–244

    Article  CAS  PubMed  Google Scholar 

  13. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  CAS  PubMed  Google Scholar 

  14. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shah SP et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399

    CAS  PubMed  Google Scholar 

  16. Stroun M et al (2001) About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 313(1–2):139–142

    Article  CAS  PubMed  Google Scholar 

  17. Nawroz H et al (1996) Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med 2(9):1035–1037

    Article  CAS  PubMed  Google Scholar 

  18. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437

    Article  CAS  PubMed  Google Scholar 

  19. Diehl F et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102(45):16368–16373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diehl F et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990

    Article  CAS  PubMed  Google Scholar 

  21. Yung TK et al (2009) Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 15(6):2076–2084

    Article  CAS  PubMed  Google Scholar 

  22. Maheswaran S et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359(4):366–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diaz LA Jr et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuang Y et al (2009) Noninvasive detection of EGFR T790 M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin Cancer Res 15(8):2630–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murtaza M et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112

    Article  CAS  PubMed  Google Scholar 

  26. Dawson SJ et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209

    Article  CAS  PubMed  Google Scholar 

  27. Forshew T et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4(136):136ra68

    Article  PubMed  Google Scholar 

  28. Chan KC et al (2013) Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 59(1):211–224

    Article  CAS  PubMed  Google Scholar 

  29. Leary RJ et al (2012) Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 4(162):162ra154

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bettegowda C et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra24

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baselga J et al (2016) Relationship between tumor biomarkers and efficacy in EMILIA, a phase III study of trastuzumab emtansine in HER2-positive metastatic breast cancer. Clin Cancer Res 22(15):3755–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Juric D et al (2012) Abstract CT-01: BYL719, a next generation PI3K alpha specific inhibitor: preliminary safety, PK, and efficacy results from the first-in-human study. Cancer Res 72(8_MeetingAbstracts):CT-01-

    Google Scholar 

  33. Juric D et al (2013) Abstract LB-64: GDC-0032, a beta isoform-sparing PI3K inhibitor: results of a first-in-human phase Ia dose escalation study. Cancer Res 73(8_MeetingAbstracts):LB-64-

    Article  Google Scholar 

  34. Mittendorf EA et al (2009) Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin Cancer Res 15(23):7381–7388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turke AB et al (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17(1):77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Awad MM, Engelman JA, Shaw AT (2013) Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med 369(12):1173

    Article  CAS  PubMed  Google Scholar 

  37. Ashworth A (2008) Drug resistance caused by reversion mutation. Cancer Res 68(24):10021–10023

    Article  CAS  PubMed  Google Scholar 

  38. Carmona FJ et al (2016) AKT signaling in ERBB2-amplified breast cancer. Pharmacol Ther 158:63–70

    Article  CAS  PubMed  Google Scholar 

  39. Chang MT et al (2016) Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 34(2):155–163

    Article  CAS  PubMed  Google Scholar 

  40. Hyman DM et al (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373(8):726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bose R et al (2013) Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 3(2):224–237

    Article  CAS  PubMed  Google Scholar 

  42. Herrera-Abreu MT et al (2016) Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res 76(8):2301–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Scaltriti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scaltriti, M. (2017). Breast Cancer Genomics. In: Veronesi, U., Goldhirsch, A., Veronesi, P., Gentilini, O., Leonardi, M. (eds) Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48848-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48848-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48846-2

  • Online ISBN: 978-3-319-48848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics