Skip to main content

Fundamental Pathways in Breast Cancer 1: Signaling from the Membrane

  • Chapter
  • First Online:
Breast Cancer

Abstract

Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide. A range of microenvironmental and systemic factors coordinately influence BC development and progression. A variety of cell membrane receptors translate the message from these factors into the modulation of complex, context-dependent intracellular signaling cascades, often regulating critical cellular processes like growth, proliferation, movement, and survival. Deregulation of this intricate signaling system at the receptor, or the other downstream levels, influences, and can sometimes drive, tumor development and progression. This chapter focuses on the two major classes of cell surface receptors and their signaling cascades, namely, the receptor tyrosine kinases (RTKs) and the G protein-coupled receptors (GPCRs), which are most often deregulated in BC.

Conflict of interest: The authors declare no conflict of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer J Int du Cancer 136(5):E359–E386

    Article  CAS  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  3. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  4. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM (1998) Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18(3):1379–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hawkins PT, Jackson TR, Stephens LR (1992) Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature 358(6382):157–159

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947

    Article  CAS  PubMed  Google Scholar 

  7. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39

    Article  CAS  PubMed  Google Scholar 

  8. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111

    Article  CAS  PubMed  Google Scholar 

  9. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269

    Article  CAS  PubMed  Google Scholar 

  10. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  11. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657

    Article  CAS  PubMed  Google Scholar 

  12. Manning BD, Cantley LC (2003) Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 28(11):573–576

    Article  CAS  PubMed  Google Scholar 

  13. Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D et al (1994) rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 269(23):16333–16339

    CAS  PubMed  Google Scholar 

  14. Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ et al (2003) Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 278(12):10189–10194

    Article  CAS  PubMed  Google Scholar 

  15. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915

    Article  CAS  PubMed  Google Scholar 

  16. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ et al (1997) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277(5322):99–101

    Article  CAS  PubMed  Google Scholar 

  17. Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE (1992) Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 257(5072):973–977

    Article  CAS  PubMed  Google Scholar 

  18. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  19. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278(38):35959–35967

    Article  CAS  PubMed  Google Scholar 

  20. Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ et al (2002) Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol 22(7):2025–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241

    Article  CAS  PubMed  Google Scholar 

  22. Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12(22):3499–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X et al (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65(7):2554–2559

    Article  CAS  PubMed  Google Scholar 

  24. Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G et al (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70(1):93–104

    Article  CAS  PubMed  Google Scholar 

  25. Sasaoka T, Rose DW, Jhun BH, Saltiel AR, Draznin B, Olefsky JM (1994) Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem 269(18):13689–13694

    CAS  PubMed  Google Scholar 

  26. Skolnik EY, Batzer A, Li N, Lee CH, Lowenstein E, Mohammadi M et al (1993) The function of GRB2 in linking the insulin receptor to Ras signaling pathways. Science 260(5116):1953–1955

    Google Scholar 

  27. Sasaoka T, Draznin B, Leitner JW, Langlois WJ, Olefsky JM (1994) Shc is the predominant signaling molecule coupling insulin receptors to activation of guanine nucleotide releasing factor and p21ras-GTP formation. J Biol Chem 269(14):10734–10738

    CAS  PubMed  Google Scholar 

  28. Moodie SA, Willumsen BM, Weber MJ, Wolfman A (1993) Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260(5114):1658–1661

    Article  CAS  PubMed  Google Scholar 

  29. Warne PH, Viciana PR, Downward J (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364(6435):352–355

    Google Scholar 

  30. Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C et al (1991) Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem 266(23):15277–15285

    CAS  PubMed  Google Scholar 

  31. Cruzalegui FH, Cano E, Treisman R (1999) ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 18(56):7948–7957

    Article  CAS  PubMed  Google Scholar 

  32. Deak M, Clifton AD, Lucocq LM, Alessi DR (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17(15):4426–4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286(5443):1358–1362

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Y, Bjorbaek C, Moller DE (1996) Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases. J Biol Chem 271(47):29773–29779

    Article  CAS  PubMed  Google Scholar 

  35. Sturgill TW, Ray LB, Erikson E, Maller JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334(6184):715–718

    Article  CAS  PubMed  Google Scholar 

  36. Chen RH, Abate C, Blenis J (1993) Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc Natl Acad Sci U S A 90(23):10952–10956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fukunaga R, Hunter T (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16(8):1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16(8):1909–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370(6490):527–532

    Article  CAS  PubMed  Google Scholar 

  40. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121(2):179–193

    Article  CAS  PubMed  Google Scholar 

  41. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A 101(37):13489–13494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K et al (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286(5445):1738–1741

    Article  CAS  PubMed  Google Scholar 

  43. Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286(5445):1741–1744

    Article  CAS  PubMed  Google Scholar 

  44. Zmajkovicova K, Jesenberger V, Catalanotti F, Baumgartner C, Reyes G, Baccarini M (2013) MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral tolerance. Mol Cell 50(1):43–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Fea K, Roth RA (1997) Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 272(50):31400–31406

    Article  PubMed  Google Scholar 

  46. Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE et al (2001) A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci U S A 98(8):4640–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al (2004) Absence of S6 K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205

    Google Scholar 

  48. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  50. Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M et al (2003) The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 8(4):307–325

    Article  CAS  PubMed  Google Scholar 

  51. King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229(4717):974–976

    Article  CAS  PubMed  Google Scholar 

  52. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res: An Official J Am Assoc Cancer Res 10(16):5367–5374

    Article  CAS  Google Scholar 

  53. Tebbutt N, Pedersen MW, Johns TG (2013) Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer 13(9):663–673

    Article  CAS  PubMed  Google Scholar 

  54. Arteaga CL, Engelman JA (2014) ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25(3):282–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guy PM, Platko JV, Cantley LC, Cerione RA, Carraway KL 3rd (1994) Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci U S A 91(17):8132–8136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (2010) ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A 107(17):7692–7697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr et al (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421(6924):756–760

    Article  CAS  PubMed  Google Scholar 

  58. Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, Aaronson SA et al (1995) Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 10(9):1813–1821

    Google Scholar 

  59. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L et al (1996) Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 15(10):2452–2467

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A (1995) Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J 14(17):4267–4275

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Graus-Porta D, Beerli RR, Daly JM, Hynes NE (1997) ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16(7):1647–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Prigent SA, Gullick WJ (1994) Identification of c-erbB-3 binding sites for phosphatidylinositol 3′-kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J 13(12):2831–2841

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF 3rd, Hynes NE (2003) The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 100(15):8933–8938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soltoff SP, Carraway KL 3rd, Prigent SA, Gullick WG, Cantley LC (1994) ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol 14(6):3550–3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ho-Yen CM, Green AR, Rakha EA, Brentnall AR, Ellis IO, Kermorgant S et al (2014) C-Met in invasive breast cancer: is there a relationship with the basal-like subtype? Cancer 120(2):163–171

    Article  CAS  PubMed  Google Scholar 

  66. Tuck AB, Park M, Sterns EE, Boag A, Elliott BE (1996) Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 148(1):225–232

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ma J, DeFrances MC, Zou C, Johnson C, Ferrell R, Zarnegar R (2009) Somatic mutation and functional polymorphism of a novel regulatory element in the HGF gene promoter causes its aberrant expression in human breast cancer. J Clin Invest 119(3):478–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen HH, Su WC, Lin PW, Guo HR, Lee WY (2007) Hypoxia-inducible factor-1alpha correlates with MET and metastasis in node-negative breast cancer. Breast Cancer Res Treat 103(2):167–175

    Article  CAS  PubMed  Google Scholar 

  69. Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K et al (2005) C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer J Int du Cancer 113(4):678–682

    Article  CAS  Google Scholar 

  70. Raghav KP, Wang W, Liu S, Chavez-MacGregor M, Meng X, Hortobagyi GN et al (2012) cMET and phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res: An Official J Am Assoc Cancer Res 18(8):2269–2277

    Article  CAS  Google Scholar 

  71. Edakuni G, Sasatomi E, Satoh T, Tokunaga O, Miyazaki K (2001) Expression of the hepatocyte growth factor/c-Met pathway is increased at the cancer front in breast carcinoma. Pathol Int 51(3):172–178

    Article  CAS  PubMed  Google Scholar 

  72. Garcia S, Dales JP, Charafe-Jauffret E, Carpentier-Meunier S, Andrac-Meyer L, Jacquemier J et al (2007) Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Hum Pathol 38(6):830–841

    Article  CAS  PubMed  Google Scholar 

  73. Garcia S, Dales JP, Charafe-Jauffret E, Carpentier-Meunier S, Andrac-Meyer L, Jacquemier J et al (2007) Overexpression of c-Met and of the transducers PI3K, FAK and JAK in breast carcinomas correlates with shorter survival and neoangiogenesis. Int J Oncol 31(1):49–58

    PubMed  Google Scholar 

  74. Yamashita J, Ogawa M, Yamashita S, Nomura K, Kuramoto M, Saishoji T et al (1994) Immunoreactive hepatocyte growth factor is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer Res 54(7):1630–1633

    CAS  PubMed  Google Scholar 

  75. Gherardi E, Birchmeier W, Birchmeier C, Vande WG (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12(2):89–103

    Article  CAS  PubMed  Google Scholar 

  76. Law JH, Habibi G, Hu K, Masoudi H, Wang MY, Stratford AL et al (2008) Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res 68(24):10238–10246

    Article  CAS  PubMed  Google Scholar 

  77. Mulligan AM, O’Malley FP, Ennis M, Fantus IG, Goodwin PJ (2007) Insulin receptor is an independent predictor of a favorable outcome in early stage breast cancer. Breast Cancer Res Treat 106(1):39–47

    Article  CAS  PubMed  Google Scholar 

  78. Seino S, Seino M, Nishi S, Bell GI (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci U S A 86(1):114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Denley A, Wallace JC, Cosgrove LJ, Forbes BE (2003) The insulin receptor isoform exon 11- (IR-A) in cancer and other diseases: a review. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme 35(11–12):778–785

    CAS  PubMed  Google Scholar 

  80. Moller DE, Yokota A, Caro JF, Flier JS (1989) Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol Endocrinol 3(8):1263–1269

    Article  CAS  PubMed  Google Scholar 

  81. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A et al (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 19(5):3278–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mosthaf L, Grako K, Dull TJ, Coussens L, Ullrich A, McClain DA (1990) Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J 9(8):2409–2413

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yamaguchi Y, Flier JS, Yokota A, Benecke H, Backer JM, Moller DE (1991) Functional properties of two naturally occurring isoforms of the human insulin receptor in Chinese hamster ovary cells. Endocrinology 129(4):2058–2066

    Article  CAS  PubMed  Google Scholar 

  84. Sciacca L, Costantino A, Pandini G, Mineo R, Frasca F, Scalia P et al (1999) Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene 18(15):2471–2479

    Article  CAS  PubMed  Google Scholar 

  85. Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y et al (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol Off J Am Soc Clin Oncol 20(1):42–51

    Article  CAS  Google Scholar 

  86. Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y et al (1999) Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res: An Official J Am Assoc Cancer Res 5(7):1935–1944

    CAS  Google Scholar 

  87. Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E et al (1985) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40(4):747–758

    Article  CAS  PubMed  Google Scholar 

  88. Kasuga M, Hedo JA, Yamada KM, Kahn CR (1982) The structure of insulin receptor and its subunits. Evidence for multiple nonreduced forms and a 210,000 possible proreceptor. J Biol Chem 257(17):10392–10399

    CAS  PubMed  Google Scholar 

  89. Cohen P (2006) The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol 7(11):867–873

    Article  CAS  PubMed  Google Scholar 

  90. Pronk GJ, McGlade J, Pelicci G, Pawson T, Bos JL (1993) Insulin-induced phosphorylation of the 46- and 52-kDa Shc proteins. J Biol Chem 268(8):5748–5753

    CAS  PubMed  Google Scholar 

  91. Belfiore A, Frasca F, Pandini G,Sciacca L, Vigneri R (2009) Insulin Receptor Isoforms and Insulin Receptor/Insulin-Like Growth Factor Receptor Hybrids in Physiology and Disease. Endocrine Reviews 30(6):586–623

    Google Scholar 

  92. Poloz Y, Stambolic V (2015) Obesity and cancer, a case for insulin signaling. Cell Death Dis 6(12):e2037

    Google Scholar 

  93. Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12(3):159–169

    CAS  PubMed  Google Scholar 

  94. Dowling RJ, Niraula S, Chang MC, Done SJ, Ennis M, McCready DR et al (2015) Changes in insulin receptor signaling underlie neoadjuvant metformin administration in breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res 17:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Creighton CJ, Casa A, Lazard Z, Huang S, Tsimelzon A, Hilsenbeck SG et al (2008) Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. J Clin Oncol Off J Am Soc Clin Oncol 26(25):4078–4085

    Article  CAS  Google Scholar 

  96. Farabaugh SM, Boone DN, Lee AV (2015) Role of IGF1R in Breast Cancer Subtypes, Stemness, and Lineage Differentiation. Front Endocrinol 6:59

    Article  Google Scholar 

  97. Heidegger I, Massoner P, Sampson N, Klocker H (2015) The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer. Cancer Lett 367(2):113–121

    Google Scholar 

  98. Massoner P, Ladurner-Rennau M, Eder IE, Klocker H (2010) Insulin-like growth factors and insulin control a multifunctional signalling network of significant importance in cancer. Br J Cancer 103(10):1479–1484

    Google Scholar 

  99. De Souza AT, Hankins GR, Washington MK,Orton TC, Jirtle RL (1995) M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nat Genet 11(4):447–449

    Google Scholar 

  100. Vella V, Pandini G, Sciacca L, Mineo R, Vigneri R, Pezzino V et al (2002) A novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates growth of thyroid cancer. J Clin Endocrinol Metab 87(1):245–254

    Article  CAS  PubMed  Google Scholar 

  101. Young D, Waitches G, Birchmeier C, Fasano O, Wigler M (1986) Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45(5):711–719

    Article  CAS  PubMed  Google Scholar 

  102. Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9(1):60–71

    Article  CAS  PubMed  Google Scholar 

  103. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H et al (1993) Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364(6434):249–252

    Article  CAS  PubMed  Google Scholar 

  104. Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J et al (1997) The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89(1):105–114

    Article  CAS  PubMed  Google Scholar 

  105. Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y et al (1998) Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 4(8):909–914

    Article  CAS  PubMed  Google Scholar 

  106. Hernandez NA, Correa E, Avila EP, Vela TA, Perez VM (2009) PAR1 is selectively over expressed in high grade breast cancer patients: a cohort study. J Transl Med 7:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120(3):303–313

    Article  CAS  PubMed  Google Scholar 

  108. Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64(6):1057–1068

    Article  CAS  PubMed  Google Scholar 

  109. Yang E, Cisowski J, Nguyen N, O’Callaghan K, Xu J, Agarwal A et al (2015) Dysregulated protease activated receptor 1 (PAR1) promotes metastatic phenotype in breast cancer through HMGA2. Oncogene 35(12):1529–1540

    Article  PubMed  CAS  Google Scholar 

  110. Feigin ME, Xue B, Hammell MC, Muthuswamy SK (2014) G-protein-coupled receptor GPR161 is overexpressed in breast cancer and is a promoter of cell proliferation and invasion. Proc Natl Acad Sci U S A 111(11):4191–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH (2010) Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176(6):2911–2920

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y et al (2000) Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci U S A 97(8):4262–4266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26

    Article  CAS  PubMed  Google Scholar 

  114. Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC et al (2011) FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 30(43):4437–4446

    Article  CAS  PubMed  Google Scholar 

  115. Klopocki E, Kristiansen G, Wild PJ, Klaman I, Castanos-Velez E, Singer G et al (2004) Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol 25(3):641–649

    CAS  PubMed  Google Scholar 

  116. Veeck J, Geisler C, Noetzel E, Alkaya S, Hartmann A, Knuchel R et al (2008) Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis 29(5):991–998

    Article  CAS  PubMed  Google Scholar 

  117. Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC (2000) Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem 275(12):8806–8811

    Article  CAS  PubMed  Google Scholar 

  118. Khoury H, Naujokas MA, Zuo D, Sangwan V, Frigault MM, Petkiewicz S et al (2005) HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell 16(2):550–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Garcia-Sainz JA, Romero-Avila MT, Medina LC (2010) Dissecting how receptor tyrosine kinases modulate G protein-coupled receptor function. Eur J Pharmacol 648(1–3):1–5

    Article  CAS  PubMed  Google Scholar 

  120. Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379(6565):557–560

    Google Scholar 

  121. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C et al (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764):884–888

    CAS  PubMed  Google Scholar 

  122. Arora P, Cuevas BD, Russo A, Johnson GL, Trejo J (2008) Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Oncogene 27(32):4434–4445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE (2007) Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res 9(5):R63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W et al (2011) Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 480(7375):118–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Eldar-Finkelman H, Seger R, Vandenheede JR, Krebs EG (1995) Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3 T3 cells. J Biol Chem 270(3):987–990

    Google Scholar 

  126. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H et al (2007) Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282(15):11221–11229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA et al (2007) PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39(2):189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Swiercz JM, Worzfeld T, Offermanns S (2008) ErbB-2 and met reciprocally regulate cellular signaling via plexin-B1. J Biol Chem 283(4):1893–1901

    Article  CAS  PubMed  Google Scholar 

  129. Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D et al (2002) The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4(9):720–724

    Article  CAS  PubMed  Google Scholar 

  130. Qiu Y, Ravi L, Kung HJ (1998) Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature 393(6680):83–85

    Google Scholar 

  131. Dans M, Gagnoux-Palacios L, Blaikie P, Klein S, Mariotti A, Giancotti FG (2001) Tyrosine phosphorylation of the beta 4 integrin cytoplasmic domain mediates Shc signaling to extracellular signal-regulated kinase and antagonizes formation of hemidesmosomes. J Biol Chem 276(2):1494–1502

    Article  CAS  PubMed  Google Scholar 

  132. Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM (1997) Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 91(7):949–960

    Article  CAS  PubMed  Google Scholar 

  133. Falcioni R, Antonini A, Nistico P, Di Stefano S, Crescenzi M, Natali PG et al (1997) Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res 236(1):76–85

    Google Scholar 

  134. Yoon SO, Shin S, Lipscomb EA (2006) A novel mechanism for integrin-mediated ras activation in breast carcinoma cells: the alpha6beta4 integrin regulates ErbB2 translation and transactivates epidermal growth factor receptor/ErbB2 signaling. Cancer Res 66(5):2732–2739

    Article  CAS  PubMed  Google Scholar 

  135. Elster N, Collins DM, Toomey S, Crown J, Eustace AJ, Hennessy BT (2015) HER2-family signalling mechanisms, clinical implications and targeting in breast cancer. Breast Cancer Res Treat 149(1):5–15

    Article  CAS  PubMed  Google Scholar 

  136. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S et al (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3(8):772–775

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vuk Stambolic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poloz, Y., Dowling, R.J.O., Stambolic, V. (2017). Fundamental Pathways in Breast Cancer 1: Signaling from the Membrane. In: Veronesi, U., Goldhirsch, A., Veronesi, P., Gentilini, O., Leonardi, M. (eds) Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48848-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48848-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48846-2

  • Online ISBN: 978-3-319-48848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics