Skip to main content

Application of Thermo-ecological Cost (TEC) as Sustainability Measure for Useful Products

  • Chapter
  • First Online:
Thermodynamics for Sustainable Management of Natural Resources

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Thermo-Ecological Cost theory has been applied to analyse different energy and technological systems. Chapter 11 presents in details several example applications of TEC analysis. These examples include: thermo-ecological cost analysis of hard coal with inclusion of the whole life cycle chain; thermo-ecological cost assessment of heat and electricity produced in different systems; thermo-ecological cost of nuclear power plant life cycle; exergy and thermo-ecological evaluation of industrial systems (blast furnace plant); example of thermo-ecological optimization devoted to solar collector system and application of thermo-ecological cost for determination of pro-ecological taxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szargut, J. (2005). Exergy method: Technical and ecological applications. Southampton-Boston: WIT Press.

    Google Scholar 

  2. Stanek, W., & Czarnowska, L. (2012). Environmental externalities and its influence on the thermo-ecological cost. International Journal of Sustainable Water and Environmental Systems, 4(1), 51–58. doi:10.5383/swes.04.01.006. http://iasks.org/sites/default/files/IJSWES-D11-0008_3_0.pdf

  3. Stanek, W., & Białecki, R. (2014). Can natural gas warm the climate more than coal? Fuel, 136, 341–348. doi:10.1016/j.fuel.2014.07.075

  4. Kostowski, W., Wson, S., Stanek, W., & Bargiel, P. (2014). Thermoecological cost of electricity production in the natural gas pressure reduction process. Energy, 76, 10–18. doi:10.1016/j.energy.2014.01.045

    Article  Google Scholar 

  5. Valero, A., & Valero, A. (2012). What are the clean reserves of fossil fuels? Resources, Conservation and Recycling, 68, 126–131. doi:10.1016/j.resconrec.2012.08.004

    Article  Google Scholar 

  6. Czarnowska, L. (2014). Thermo-ecological cost of products with emphasis on external environmental costs (Doctoral thesis, Faculty of Power and Environmental Engineering—Silesian University of Technology and School of Naval Architecture and Marine Engineering—National Technical University of Athens, Gliwice, Poland).

    Google Scholar 

  7. Stanek, W., & Czarnowska, L. (2012). Environmental externalities and their influence on the thermo-ecological cost. International Journal of Sustainable Water and Environmental Systems, 4(1), 51–58.

    Google Scholar 

  8. Stanek, W., Czarnowska, L., & Kalina, J. (2014). Application of life cycle thermo-ecological cost methodology for evaluation of biomass integrated gasification gas turbine based cogeneration. Applied Thermal Engineering, 70, 1007–1017.

    Article  Google Scholar 

  9. Role of Alternative Energy Sources: Nuclear Technology Assessment. DOE/NETL-2011/1502. August 8, 2012. National Energy Technology Laboratory. www.netl.doe.gov. Accessed January 23, 2014.

  10. Stanek, W., Szargut, J., Kolenda, Z., Czarnowska, L., & Bury, T. (2014). Thermo-ecological evaluation of nuclear power plant within the whole life cycle. In 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems ECOS 2014, Turku, Finland, June 15–19, 2014.

    Google Scholar 

  11. Energy and Fuel Management in 2011, 2012. Main Statistical Office. www.stat.gov.pl. Accessed September 2014 (in Polish).

  12. Szargut, J. (2005). Exergy analysis: Technical and ecological applications. Southampton: WIT-Press.

    Google Scholar 

  13. Celinski, Z., & Strupczewski, A. (1984). Nuclear power. WNT Warszawa (in Polish).

    Google Scholar 

  14. Stanek, W., Szargut, J., Kolenda, Z., Czarnowska, L., & Bury, T. (2014). Thermo-ecological evaluation of nuclear power plant within the whole life cycle. In Conference on ECOS’2014, Turku, Finland 2014.

    Google Scholar 

  15. Szargut, J., Ziębik, A., & Stanek, W. (2002). Depletion of the non-renewable natural exergy resources as a measure of the ecological cost. Energy Conversion and Management, 42, 1149–1163.

    Article  Google Scholar 

  16. Szargut, J., & Stanek, W. (2010). Thermo-climatic cost of the domestic consumption products. Energy, 35(2), 1196–1199.

    Article  Google Scholar 

  17. Finneveden, G., & Ostlund, P. (1997). Exergies of natural resources in life-cycle assessment and other applications. Energy, 22(9).

    Google Scholar 

  18. Life Cycle Analysis: Existing Pulverized Coal (EXPC) Power Plant. DOE/NETL-403-110809. September 30, 2010. National Energy Technology Laboratory. www.netl.doe.gov. Accessed September 2014.

  19. Life Cycle Analysis: Natural Gas Combined Cycle (NGCC) Power Plant. DOE/NETL-403-110509. September 30, 2010. National Energy Technology Laboratory. www.netl.doe.gov. Accessed September 2014.

  20. Role of Alternative Energy Sources: Nuclear Technology Assessment. DOE/NETL-2011/1502. August 8, 2012. National Energy Technology Laboratory. www.netl.doe.gov. Accessed January 23, 2014.

  21. Szargut, J., & Ziębik, A. (1983). Wpływ parametrów dmuchu i dodatku czynników paliwowo-redukcyjnych na wskaźniki energetyczne zespołu wielkopiecowego. Ossolineum, Wrocław.

    Google Scholar 

  22. Stanek, W., Szega, M., Blacha, L., Niesler, M., & Gawron, M. (2015). Exergo-ecological assessment of auxiliary fuel injection into blast-furnace. Archives of Metallurgy and Materials, 60(2), 711–719.

    Article  Google Scholar 

  23. Stanek, W., Blacha, L., & Szega, M. (2015). Thermo-ecological cost (TEC) evaluation of metallurgical processes. Metalurgija, 54(1), 270–272.

    Google Scholar 

  24. Szega, M. (1993). Analiza termodynamiczna możliwości wykorzystania składników redukcyjnych gazu wielkopiecowego zawracanego do procesu. Praca doktorska, ITC, Gliwice.

    Google Scholar 

  25. Szega, M., Blacha, L., & Stanek ,W. (2015). Methods of mathematical modeling for evaluation of energy management of blast-furnace plant. Metalurgija, 54(3), 499–502.

    Google Scholar 

  26. Szargut, J. (2004). Minimization of the depletion of non-renewable resources by means of the optimization of design parameters. Energy, 29(12–15), 2161–2169.

    Article  Google Scholar 

  27. Cornellisen, R. L., Marquart, E. N., & Hirs, G. G. (1999). The value of exergetic life cycle assessment besides LCA. In M. Ishida, G. Tsatsaronis, M. J. Moran, & H. Kataoka (Eds.), Proceedings of ECOS’99, Tokyo (p. 282).

    Google Scholar 

  28. Pluta, Z. (2003). Solar energy installations (SÅ‚oneczne instalacje energetyczne). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej (Politechnika Warszawska, Plac Politechniki, 00-661 Warszawa) (in Polish).

    Google Scholar 

  29. Gillett, W. B., & Moon, J. E. (1985). Solar collectors. Test methods and design guidelines. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  30. Smolec, W. (2000). Photothermal conversion of solar radiation (Fototermiczna konwersja energii słonecznej). Warszawa: Wydawnictwo Naukowe PWN, (Miodowa 10, 00-251 Warszawa) (in Polish).

    Google Scholar 

  31. Duffie, J. A., & Beckman, W. A. (1991). Solar engineering of thermal processes. New York: Wiley.

    Google Scholar 

  32. Pluta, Z. (2000). Theoretical principles of photothermal conversion of solar radiation (Podstawy teoretryczne fototermicznej konwersji energii promieniowania słonecznego). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, (Politechnika Warszawska, Plac Politechniki, 00-661 Warszawa) (in Polish).

    Google Scholar 

  33. Szargut, J. (2005). Exergy method: Technical and ecological applications. Southampton: WIT Press.

    Google Scholar 

  34. Wiśniewski, G., Gołębiowski, S., & Gryciuk, M. (2001). Solar collectors; guide for utilization of solar energy (Kolektory słoneczne, poradnik wykorzystania energii słonecznej). Warszawa: Centalny Ośrodek Informacji Budownictwa (Bartycka 26, 00-716 Warszawa PL) (in Polish).

    Google Scholar 

  35. Pasko, J. (2012). Distributed electricity and heat generation. Warsaw University Press (in Polish).

    Google Scholar 

  36. Project of Act on Renewable Energy Resources. (2011). Ministry of Economy. www.mg.gov.pl. Accessed February 2015.

  37. Act—Polish Energy Law. www.ure.gov.pl. Accessed February 2015.

  38. Polish Energy Policy Till 2030 (in Polish). Ministry of Economy. www.mg.gov.pl. Accessed February 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Stanek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stanek, W., Szargut, J., Czarnowska, L. (2017). Application of Thermo-ecological Cost (TEC) as Sustainability Measure for Useful Products. In: Stanek, W. (eds) Thermodynamics for Sustainable Management of Natural Resources . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-48649-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48649-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48648-2

  • Online ISBN: 978-3-319-48649-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics