Skip to main content

Conducting Polymer Composite-Based Sensors for Flexible Electronics

  • Living reference work entry
  • First Online:
Book cover Handbook of Ecomaterials

Abstract

Advent of electronics has transformed the human lifestyle into echelons of sophistications. Flexi-electronic technologies such as wearable electronics are the future of mankind enabling the use of electronic integration in daily chores of life – may it be in the robotic arm depicting the human motion from the remote location aiding in the surgery, may it be a layer of skin coat which sense the physical parameters, or may it be integration of electronics in the human body such as pacemaker; the growth of electronic industry has led in simplifying the complex tasks for computations. Nanoscale polymer composites provide virtually ideal design space for the new generation of flexi-electronic materials. The following chapter elaborates one such application of composites in development of flexible electronics with the use of conducting polymer composites (CPCs) which are the class of improvised organic substances showing the electrical properties analogous to metals. CPCs have been trending in the research arena only because of the economic importance, better environmental stability, and improved electrical conductivity, which includes mechanical properties, electromechanical properties, and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors Actuators B Chem 136(1):275–286

    Article  Google Scholar 

  2. Ahuja T, Mir IA, Kumar D (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28(5):791–805

    Article  Google Scholar 

  3. Bhadra S et al (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810

    Article  Google Scholar 

  4. Facchetti A (2011) π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23(3):733–758

    Article  Google Scholar 

  5. Latif U, Dickert FL (2015) Graphene hybrid materials in gas sensing applications. Sensors 15(12):30504–30524

    Article  Google Scholar 

  6. MacDiarmid A et al (1987) Polyaniline: electrochemistry and application to rechargeable batteries. Synth Met 18(1–3):393–398

    Article  Google Scholar 

  7. Misra S, Chandra S (1994) Electronic applications of semiconducting polymers, Indian Journal of Chemistry -Section A (IJCA) Vol 33A, 583–594

    Google Scholar 

  8. Ramachandran R et al (2013) Recent trends in graphene based electrode materials for energy storage devices and sensors applications. Int J Electrochem Sci 8(10):11680–11694

    Google Scholar 

  9. Ravichandran R et al (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7(Suppl 5):S559–S579

    Article  Google Scholar 

  10. Waltman RJ, Bargon J (1986) Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can J Chem 64(1):76–95

    Article  Google Scholar 

  11. Chiang CK et al (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39(17):1098

    Article  Google Scholar 

  12. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40(14):2581–2590

    Article  Google Scholar 

  13. Shirakawa H et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. J Chem Soc Chem Commun 16:578–580

    Article  Google Scholar 

  14. Gelinck GH et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3(2):106–110

    Article  Google Scholar 

  15. Lipomi DJ et al (2011) Stretchable organic solar cells. Adv Mater 23(15):1771–1775

    Article  Google Scholar 

  16. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327(5973):1603–1607

    Article  Google Scholar 

  17. Jung M et al (2010) All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices 57(3):571–580

    Article  Google Scholar 

  18. Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578

    Article  Google Scholar 

  19. Rogers JA et al (2001) Like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci 98(9):4835–4840

    Article  Google Scholar 

  20. Gaikwad AM et al (2013) A flexible high potential printed battery for powering printed electronics. Appl Phys Lett 102(23):233302

    Article  Google Scholar 

  21. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108(2):746–769

    Article  Google Scholar 

  22. Matsuhisa N et al (2017) Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater 16:834–840

    Article  Google Scholar 

  23. Gangopadhyay R, De A (2001) Conducting polymer composites: novel materials for gas sensing. Sensors Actuators B Chem 77(1):326–329

    Article  Google Scholar 

  24. Mostafaei A, Zolriasatein A (2012) Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci Mater Int 22(4):273–280

    Article  Google Scholar 

  25. Della Pina C et al (2018) Polyaniline (PANI): an innovative support for sampling and removal of VOCs in air matrices. J Hazard Mater 344(Suppl C):308–315

    Article  Google Scholar 

  26. Patil P et al (2017) Fluorescence studies on organic acids doped PANI-PVA thin films and quenching with picric acid. Int J Adv Res Innov Ideas Educ 3(3):3259–3269

    Google Scholar 

  27. Kim JY et al (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225

    Article  Google Scholar 

  28. Mohammadi A et al (1990) Conducting polymers prepared by template polymerization: polypyrrole. Polymer 31(3):395–399

    Article  Google Scholar 

  29. Rao PS, Sathyanarayana DN, Palaniappan S (2002) Polymerization of aniline in an organic peroxide system by the inverted emulsion process. Macromolecules 35(13):4988–4996

    Article  Google Scholar 

  30. Sariciftci NS et al (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Article  Google Scholar 

  31. Yuan L et al (2011) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6(1):656–661

    Article  Google Scholar 

  32. Bormashenko E et al (2004) Development of novel binary and ternary conductive composites based on polyethylene, low-melting-point metal alloy and carbon black. J Thermoplast Compos Mater 17(3):245–257

    Article  Google Scholar 

  33. Ziadan KM, Saadon WT (2012) Study of the electrical characteristics of polyaniline prepared by electrochemical polymerization. Energy Procedia 19(Suppl C):71–79

    Article  Google Scholar 

  34. Li C et al (2010) Polyphenylene-based materials for organic photovoltaics. Chem Rev 110(11):6817–6855

    Article  Google Scholar 

  35. Liu R (2014) Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials 7(4):2747–2771

    Article  Google Scholar 

  36. Tedlla BZ et al (2015) Understanding triplet formation pathways in bulk heterojunction polymer: fullerene photovoltaic devices. Adv Energy Mater 5(2) (1–11) 1401109. https://doi.org/10.1002/aenm.201401109

  37. Das M, Sarkar D (2017) Development of room temperature ethanol sensor from polypyrrole (PPy) embedded in polyvinyl alcohol (PVA) matrix. Polym Bull 1–17. Springer, Berlin Heidelberg. https://doi.org/10.1007/s00289-017-2192-y

  38. Wang X-Q, Xin B-J, Xu J (2013) Preparation of conductive PANI/PVA composites via an emulsion route. Int J Polym Sci 2013:6

    Google Scholar 

  39. Litvinov VP, Dyachenko VD (1997) Selenium-containing heterocycles. Russ Chem Rev 66(11):923–951

    Article  Google Scholar 

  40. Mohamoud MA, Ben Aoun S (2014) Electrochemical behaviour of stand-alone polyaniline–poly(vinyl alcohol) composite films. J Taibah Univ Sci 8(4):337–342

    Article  Google Scholar 

  41. Ziadan KM, Haykaz KA, Abudalla AQ (2012) Some electrical properties of soluble conducting polymer polyhexylthiophene (PHT) prepared by electrochemical polymerization. Energy Procedia 18(Suppl C):1059–1067

    Article  Google Scholar 

  42. Chen Y, Manzhos S (2016) Voltage and capacity control of polyaniline based organic cathodes: an ab initio study. J Power Sources 336(Suppl C):126–131

    Article  Google Scholar 

  43. Farrell T et al (2017) Organic dispersion of polyaniline and single-walled carbon nanotubes and polyblends with poly(methyl methacrylate). Polymer 129(Suppl C):1–4

    Article  Google Scholar 

  44. Kim B-J et al (2001) Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions. Synth Met 122(2):297–304

    Article  Google Scholar 

  45. Patil RC, Ahmed SM, Ogura K (2000) Preparation and characterization of highly transparent conducting composites consisting of acid-doped poly(o-toluidine) and poly(methyl methacrylate). Polym J 32(6):466–470

    Article  Google Scholar 

  46. Ullah R et al (2016) Synthesis and characterization of polyaniline doped with polyvinyl alcohol by inverse emulsion polymerization. Synth Met 222(Part B):162–169

    Article  Google Scholar 

  47. Ibrahim KA (2017) Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy. Arab J Chem 10(Suppl 2):S2668–S2674

    Article  Google Scholar 

  48. Tripathi S et al (2011) Front matter for volume 1393. In: AIP conference proceedings. AIP

    Google Scholar 

  49. Hakemi H-A, Caporusso M, Santangelo M (2000) Polymer stabilized liquid crystals and flexible devices thereof. Google Patents

    Google Scholar 

  50. Kikuchi H et al (2009) 39.1: invited paper: optically isotropic nano-structured liquid crystal composites for display applications. In: SID symposium digest of technical papers. Wiley Online Library

    Google Scholar 

  51. Ge Z et al (2009) Electro-optics of polymer-stabilized blue phase liquid crystal displays. Appl Phys Lett 94(10):101104

    Article  Google Scholar 

  52. Ducharme S et al (1995) Observation of the photorefractive effect in a polymer. In: Landmark papers on photorefractive nonlinear optics. World Scientific, Singapore, pp 427–430. https://doi.org/10.1142/9789812832047_0057

  53. Glass A et al (1975) Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media. J Electron Mater 4(5):915–943

    Article  Google Scholar 

  54. Topart P, Hourquebie P (1999) Infrared switching electroemissive devices based on highly conducting polymers. Thin Solid Films 352(1):243–248

    Article  Google Scholar 

  55. Ge C, Armstrong NR, Saavedra SS (2007) pH-sensing properties of poly (aniline) ultrathin films self-assembled on indium− tin oxide. Anal Chem 79(4):1401–1410

    Article  Google Scholar 

  56. Arshak K et al (2004) A review of gas sensors employed in electronic nose applications. Sens Rev 24(2):181–198

    Article  Google Scholar 

  57. Carlin CM, Kepley LJ, Bard AJ (1985) Polymer films on electrodes XVI. In situ ellipsometric measurements of polybipyrazine, polyaniline, and polyvinylferrocene films. J Electrochem Soc 132(2):353–359

    Article  Google Scholar 

  58. Beccherelli R et al (2010) Design of a very large chemical sensor system for mimicking biological olfaction. Sensors Actuators B Chem 146(2):446–452

    Article  Google Scholar 

  59. Patil PT, Anwane RS, Kondawar SB (2015) Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Mater Sci 10:195–204

    Article  Google Scholar 

  60. Choudhury A (2009) Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sensors Actuators B Chem 138(1):318–325

    Article  Google Scholar 

  61. Ketpang K, Park JS (2010) Electrospinning PVDF/PPy/MWCNTs conducting composites. Synth Met 160(15):1603–1608

    Article  Google Scholar 

  62. Bhat N, Gadre A, Bambole V (2001) Structural, mechanical, and electrical properties of electropolymerized polypyrrole composite films. J Appl Polym Sci 80(13):2511–2517

    Article  Google Scholar 

  63. Khuspe G et al (2013) Ammonia gas sensing properties of CSA doped PANi-SnO2 nanohybrid thin films. Synth Met 185:1–8

    Google Scholar 

  64. Tudoract F, Grtgora M (2010) Study of polyaniline-iron oxides composites using for gas detection. Optoelectron Adv Mater 4:43–47

    Google Scholar 

  65. Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7(3):267–307

    Article  Google Scholar 

  66. Sharma HJ, Sonwane ND, Kondawar SB (2015) Electrospun SnO2/polyaniline composite nanofibers based low temperature hydrogen gas sensor. Fibers Polym 16(7):1527–1532

    Article  Google Scholar 

  67. Zöpfl A et al (2014) Reduced graphene oxide and graphene composite materials for improved gas sensing at low temperature. Faraday Discuss 173:403–414

    Article  Google Scholar 

  68. Bai H et al (2011) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21(46):18653–18658

    Article  Google Scholar 

  69. Kuilla T et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  Google Scholar 

  70. Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327

    Article  Google Scholar 

  71. Somani PR, Radhakrishnan S (2003) Electrochromic materials and devices: present and future. Mater Chem Phys 77(1):117–133

    Article  Google Scholar 

  72. Lacroix J, Kanazawa K, Diaz A (1989) Polyaniline: a very fast electrochromic material. J Electrochem Soc 136(5):1308–1313

    Article  Google Scholar 

  73. Zhou Y, Hu L, Grüner G (2006) A method of printing carbon nanotube thin films. Appl Phys Lett 88(12):123109

    Article  Google Scholar 

  74. Lee G-W et al (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos A: Appl Sci Manuf 37(5):727–734

    Article  Google Scholar 

  75. Glatz-Reichenbach J (1999) Feature article conducting polymer composites. J Electroceram 3(4):329–346

    Article  Google Scholar 

  76. Bhattacharya SK (1986) Metal filled polymers, vol 11. CRC Press, Boca Raton

    Google Scholar 

  77. Tchmutin I et al (2003) Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon 41(7):1391–1395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanabasava V. Ganachari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ganachari, S.V., Viannie, L.R., Mogre, P., Tapaskar, R.P., Yaradoddi, J.S. (2018). Conducting Polymer Composite-Based Sensors for Flexible Electronics. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_188-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_188-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics