Skip to main content

Antimicrobial Activity of the Engineered Nanoparticles Used as Coating Agents

  • Living reference work entry
  • First Online:
Book cover Handbook of Ecomaterials

Abstract

Engineered nanoparticles (ENPs) have been intensively studied within the past decade for use in environmental purifications, energy storage/ conversion, antimicrobial coating agents and so on. Several mono metallic and doped nanomaterials such as (TiO2, ZnO, Ag TiO2, Ag ZnO, etc.,) have been prepared and tested for photocatalysis and antimicrobial toxicity. Nanoparticles are of interest as antibacterial agents and subsequently as anti-coating materials because of their large surface area to volume ratio and the generation of highly Reactive Oxygen Species (ROS) such as O2-, H2O2 and HO. which are the known principal agents in damaging the cell wall of many microbes.

Many studies have investigated the antibacterial effect of monometallic and doped nanomaterial, however our investigation focused upon the use of bi, tri metallic and semiconductor coupled oxides in inhibiting the bacterial growth and for photocatalysis. Bacillus subtillis (gram positive) and Escherichia coli (gram negative) were taken as model microbes for the antibacterial tests using different ENPs. Correlations have been formed between the antibacterial effects and morphology of the ENPs. Nano coatings are therefore a prospective way to not only control the growth of microbes but also to oxidize certain common indoor air pollutants such as VOCs and NOx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abid JP, Wark AW, Brevet PF, Girault HH (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun (7):792–793

    Google Scholar 

  2. Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum a novel approach towards weed utilization. Biotechnol Res Int 45:1–8

    Article  Google Scholar 

  3. Ahmed NA, Mohammed FA, Zahraa AK (2016) Antibacterial activity of Cadmium Oxide nanoparticles synthesized by chemical method. J Multidiscip Eng Sci Technol 3: 5007–5011

    Google Scholar 

  4. Aymonier C, U Schlotterbeck, L Antonietti, P Zacharias, R Thomann, J C Tiller, S Mecking (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 24: 3018–19

    Google Scholar 

  5. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249

    Article  Google Scholar 

  6. Bera RK, Mandal SM, Retna RC (2014) Antimicrobial activity of fluorescent ag nanoparticles. Lett Appl Microbiol 58:520–526

    Article  Google Scholar 

  7. Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892

    Article  Google Scholar 

  8. Brayner R, Ferrari Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  Google Scholar 

  9. Das SK (2009) Gold nanoparticles microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  Google Scholar 

  10. Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670

    Article  Google Scholar 

  11. Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1(7):1553–1560

    Article  Google Scholar 

  12. Feynman R (1991) There’s plenty of room at the bottom. Science 254:1300–1301

    Article  Google Scholar 

  13. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3(9):1261–1263

    Article  Google Scholar 

  14. Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Gay YA (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6:681–688

    Article  Google Scholar 

  15. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8:37–45

    Article  Google Scholar 

  16. Herrera M, Carrion P, Baca P, Liebana J, Castillo A (2001) In vitro antibacterial activity of glass-ionomer cements. Microbios 104:141–148

    Google Scholar 

  17. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789

    Article  Google Scholar 

  18. Hosseinpour Mashkani SM, Ramezani M (2014) Silver and silver oxide nanoparticles synthesis and characterization by thermal decomposition. Mater Lett 130:259–262

    Article  Google Scholar 

  19. Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110(9):4066–4072

    Article  Google Scholar 

  20. Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van DRP (1999) Nanosphere lithography size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863

    Article  Google Scholar 

  21. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    Google Scholar 

  22. Kim JS et al (2007a) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  Google Scholar 

  23. Konishi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    Article  Google Scholar 

  24. Kotloff K, Winickoff J, Ivanoff B, Clemens JD, Swerdlow D, Sansonetti P, Adak G, Levine M (1999) Global burden of Shigella infections implications for vaccine development and implementation of control strategies. Bull World Health Organ 77(8):651–666

    Google Scholar 

  25. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60 Buckminsterfullerene. Nature 318:162

    Article  Google Scholar 

  26. Kruis F, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69:329–334

    Article  Google Scholar 

  27. Loomba L, Scarabelli T (2013) Metallic nanoparticles and their medicinal potential. Part I: Gold and silver colloids. Ther Deliv 4(7):859–873

    Article  Google Scholar 

  28. Martínez Flores E, Negrete J, Torres Villaseñor G (2003) Structure and properties of Zn-Al-Cu alloy reinforced with alumina particles. Mater Des 24:281–286

    Article  Google Scholar 

  29. Merga G, Wilson R, Lynn G, Milosavljevic B, Meisel D (2007) Redox catalysis on “naked” silver nanoparticles. J Phys Chem C 111:12220–12206

    Article  Google Scholar 

  30. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  Google Scholar 

  31. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams CS, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:15–27

    Article  Google Scholar 

  32. Pavasupree S, Jitputti J, Ngamsinlapasathian S, Yoshikawa S (2008) Hydrothermal synthesis, characterization, photocatalytic activity and dye sensitized solar cell performance of mesoporous anatase TiO2 nanopowders. Mater Res Bull 43:149–157

    Article  Google Scholar 

  33. Perni S (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93

    Article  Google Scholar 

  34. Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2009) Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28:207–213

    Article  Google Scholar 

  35. Predoi D, Valsangiacom CM (2007) Thermal studies of magnetic spinal iron oxide in solution. J Optoelectron Adv Mater 9:1797–1799

    Google Scholar 

  36. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control potential applications and implications. Water Res 42:4591–4602

    Article  Google Scholar 

  37. Raghupati RK, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  Google Scholar 

  38. Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798

    Article  Google Scholar 

  39. Rasmussen J, Martinez W, Louka E, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077

    Article  Google Scholar 

  40. Singh R, Nalwa HS (2011) Medical applications of nanoparticles in biological imaging, cell labeling, AntimicrobialAgents, and anticancer nanodrugs. J Biomed Nanotechnol 7:489–503

    Article  Google Scholar 

  41. Ravishankar RV, Jamuna BA (2011) Nanoparticles and Their Potential Application as Antimicrobials, Science against Microbial Pathogens: Communicating Current Research and Technological Advances. In: Méndez-Vilas, A., Ed., Formatex, Microbiology Series 1, Spain, 197–209.

    Google Scholar 

  42. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  Google Scholar 

  43. Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29:95–99

    Article  Google Scholar 

  44. Rupareli JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–771

    Article  Google Scholar 

  45. Sadiq M, Chowdhury B, Chandrasekaran N, Mukherjee A (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine 5:282–286

    Article  Google Scholar 

  46. Saha B (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2:614–622

    Article  Google Scholar 

  47. Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nanoparticles with highly efficient anti-microbial property. Polyhedron 26:4419–4426

    Article  Google Scholar 

  48. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology methods and literature. Int J Nanomedicine 7:2767–2781

    Google Scholar 

  49. Sergeev BM, Kasaikin VA, Litmanovich EA, Sergeev GB, Prusov AN (1999) Cryochemical synthesis and properties of silver nanoparticle dispersions stabilised by poly(2-dimethylaminoethyl methacrylate). Mendeleev Commun 9(4):130–132

    Article  Google Scholar 

  50. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  Google Scholar 

  51. Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO (1974) Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother 6:637–642

    Article  Google Scholar 

  52. Stoimenov PK (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  Google Scholar 

  53. Talebi J, Halladj R, Askari S (2010) Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate. J Mater Sci 45:3318–3324

    Article  Google Scholar 

  54. Tong D, Wu P, Su PK, Wang DQ, Tian HY (2012) Preparation of zinc oxide nanospheres by solution plasma process and their optical property, photocatalytic and antibacterial activities. Mater Lett 70:94–97

    Article  Google Scholar 

  55. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    Article  Google Scholar 

  56. Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21:1161–1165

    Article  Google Scholar 

  57. Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. J Adv Mater 18:1109–1120

    Article  Google Scholar 

  58. Wist J, Sanabria J, Dierolf C, Torres W, Pulgarin C (2004) Evaluation of photocatalytic disinfection of crude water for drinking water production journal of photochemistry and photobiology a. Chemistry 147:241–246

    Google Scholar 

  59. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    Article  Google Scholar 

  60. Yoshida K, Tanagawa M, Atsuta M (1999) Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J Biomed Mater Res 47:516–522

    Article  Google Scholar 

  61. Yoshimura M, Namura S, Akamaysu H, Horio T (1994) Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro. Br J Dermatol 135:528–532

    Article  Google Scholar 

  62. Zhang Q, Li N, Goebl J, Lu ZD, Yin YD (2011) A systematic study of the synthesis of silver nanoplates is citrate a “magic” reagent? J Am Chem Soc 133:18931–18939

    Article  Google Scholar 

  63. Zhu JJ, Liao XH, Zhao XN, Chen HY (2001) Preparation of silver nanorods by electrochemical methods. Mater Lett 49:91–95

    Article  Google Scholar 

  64. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshisundaram Swaminathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Swaminathan, M., Sharma, N.K. (2018). Antimicrobial Activity of the Engineered Nanoparticles Used as Coating Agents. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics