Skip to main content

An Underactuated Biped Robot Guided via Elastic Elements: EKF-Based Estimation of Ankle Mechanical Parameters

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 14 (IAS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 531))

Included in the following conference series:

  • 2655 Accesses

Abstract

When studying humanoid robots, many of the processes involving the synthesis of robots motion have much in common with problems found in biomechanics and human motor-control research. Based on the use of simulation tools, additive manufacturing and system identification techniques, this work presents the design and implementation of an underactuated biped robot guided via elastic elements. In particular, the focus was on the analysis of stable posture maintenance during standing obtained on a completely passive humanoid robotic system. An estimation of the mechanical parameters of the elastic mechanical network was performed using an Extended Kalman Filter. The results provided here are part of a larger project that aims to implement a hybrid robotic system where the balance of bipeds are obtained using passive elastic elements, thus simplifying the control of gait. This work contributes to the research and development of increasingly efficient human-like robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cabrillo.edu/~dbrown/tracker/.

  2. 2.

    https://simtk.org/home/opensim.

  3. 3.

    https://www.design-simulation.com/SimWise4d/index.php.

References

  1. Khatib, O., Demircan, E., De Sapio, V., Sentis, L., Besier, T., Delp, S.: Robotics-based synthesis of human motion. J. Physiol. Paris 103(3–5), 211–219 (2009)

    Article  Google Scholar 

  2. Ohta, H., Yamakita, M., Furuta, K.: From passive to active dynamic walking. Int. J. Robust Nonlinear Control 2001(11), 287–303 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hanazawa, Y., Suda, H., Iemura, Y., Yamakita, M.: Active walking robot mimicking flat-footed passive dynamic walking. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1281–1286 (2012)

    Google Scholar 

  4. Zhou, X., Guan, Y., Zhu, H., Wu, W., Chen, X., Zhang, H., Fu, Y.: Bibot-U6: a novel 6-DoF biped active walking robot—modeling, planning and control. Int. J. Human. Robot. 11, 1450014 (2014)

    Article  Google Scholar 

  5. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Google Scholar 

  6. Collins, S.H., Ruina, A.L., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082 (2005)

    Article  Google Scholar 

  7. Hitomi, K., Shibata, T., Nakamura, Y., Ishii, S.: Reinforcement learning for quasi-passive dynamic walking of an unstable biped robot. Robot. Autom. Syst. 54(12), 982–988 (2006)

    Article  Google Scholar 

  8. Omer, A.M.M., Ghorbani, R., Hun-ok, L., Takanishi, A.: Semi-passive dynamic walking for biped walking robot using controllable joint stiffnesss based on dynamic simulation. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009, pp. 1600–1605 (2009)

    Google Scholar 

  9. Visser, L.C., Carloni, R., Stramigioli, S.: Variable stiffness actuators: a port-based analysis and a comparison of energy efficiency. In: 2010 IEEE International Conference on Robotics and Automation (ICRA) (2010)

    Google Scholar 

  10. Cotton, S., Olaru, I.M.C., Bellman, M., van der Ven, T., Godowski, J., Pratt, J.: Fast runner: a fast, efficient and robust bipedal robot. Concept and planar simulation. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 2358–2364 (2012)

    Google Scholar 

  11. Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., Lefeber, D.: MACCEPA: the actuator with adaptable compliance for dynamic walking bipeds. In: Proceedings of the 8th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2005), pp. 759–766 (2006)

    Google Scholar 

  12. Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T.G., Hollander, K.W.: Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. Int. J. Robot. Res. 28(1), 90–103 (2009)

    Article  Google Scholar 

  13. Radkhah, K., Lens, T., Seyfarth, A., von Stryk, O.: On the influence of elastic actuation and monoarticular structures in biologically inspired bipedal robots. In: Proceedings of the 2010 IEEE International Conference on Biomedical Robotics and Biomechatronics, pp. 389–394 (2010)

    Google Scholar 

  14. Junius, K., Cherelle, P., Brackx, B., Geeroms, J., Schepers, T., Vanderborght, B., Lefeber, D.: On the use of adaptable compliant actuators in prosthetics, rehabilitation and assistive robotics. In: Proceedings of the 9th International Workshop on Robot Motion and Control, Wasowo Palace, Wasowo, Poland, 3–5 July 2013

    Google Scholar 

  15. Pratt, G.A., Williamson, M.M.: Series elastic actuators. Intelligent robots and systems 95. Human robot interaction and cooperative robots. In: IEEE/RSJ International Conference on Proceedings 1995, vol. 1, pp. 399–406 (1995)

    Google Scholar 

  16. Winter, D.A., Patla, A.E., Rietdyk, S., Ischac, M.G. 2001. Ankle muscle stiffness in the control of balance during quiet standing. J. Neurophys. 2001 Jun; 85(6):2630-3

    Google Scholar 

  17. Casadio, M., Morasso, P.G., Sanguineti, V.: Direct measurement of ankle stiffness during quiet standing: implications for control modelling and clinical application. Gait Posture 21(4), 410–424 (2005)

    Google Scholar 

  18. Westwick, D.T., Perreault, E.J.: Estimates of acausal joint impedance models. IEEE Trans. Biomed. Eng. 59(10), 2913–2921 (2012)

    Article  Google Scholar 

  19. Radkhah, K., Scholz, D., von Stryk, O., Maus, M., Seyfarth, A.: Towards human-like bipedal locomotion with three-segmented elastic legs. In: Proceedings of the 41st International Symposium on Robotics (ISR 2010) and 6th German Conference on Robotics (ROBOTIK 2010), pp. 696–703 (2010)

    Google Scholar 

  20. Radkhah, K., Lens, T., von Stryk, O.: Detailed dynamics modeling of BioBiped’s monoarticular and biarticular tendon-driven actuation system. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4243–4250 (2012)

    Google Scholar 

  21. Bortoletto, R., Sartori, M., He, F., Pagello, E.: Simulating an elastic bipedal robot based on musculoskeletal modeling. In: Proceedings of Biomimetic and Biohybrid Systems (Living Machines). LNCS, vol. 7375, pp. 26–37 (2012)

    Google Scholar 

  22. Bortoletto, R., Sartori, M., He, F., Pagello, E.: Modeling and simulating compliant movements in a musculoskeletal bipedal robot. In: Proceedings of Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). LNCS, vol. 7628, pp. 237–250 (2012)

    Google Scholar 

  23. He, F., Liang, Y., Zhang, H., Pagello, E.: Modeling, dynamics and control of an extended elastic actuator in musculoskeletal robot system. In: Proceedings of the 12th International Conference IAS-12. Advances in Intelligent Systems and Computing, vol. 194, pp. 671–681 (2013)

    Google Scholar 

  24. Papich J.R., Kennett C.J., Piovesan D.: Open-source software in biomedical education: from tracking to modeling movements. In: 121st American Society for Education in Engineering Annual Conference ASEE (2014)

    Google Scholar 

  25. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–50 (2007)

    Google Scholar 

  26. Reilly, T., O’Rourke, J.K., Steudler, D., Piovesan D., Bortoletto, R.: Locomotive Underactuated Implement Guided via Elastic Elements (L.U.I.G.E.E.): a preliminary design. In Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition (2015)

    Google Scholar 

  27. Piovesan, D., Pierobon, A., DiZio, P., Lackner, J.R.: Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach. In: PloS one, vol. 7, p. e 33086 (2012)

    Google Scholar 

  28. Romero, C.R., Cardenas, R. Piovesan, D.: Viscoelastic properties of the ankle during quiet standing via raster images and EKF. In: 2014 IEEE Signal Processing in Medicine and Biology Symposium, pp. 1–5 (2014)

    Google Scholar 

  29. Simon, D.: Optimal State Estimation, Kalman, H\(_{\infty }\), and Nonlinear Approaches. John Wiley & Sons, Inc., New Jersey (2006)

    Book  Google Scholar 

  30. Knabe, C.S., Orekhov, V., Hopkins, M.A., Lattimer, B.Y., Hong, D.W.: Two configurations of series elastic actuators for linearly actuated humanoid robots with large range of motion. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (2014)

    Google Scholar 

  31. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice—a survey. Automatica 25(3), 335–348 (1989)

    Article  MATH  Google Scholar 

  32. Grimmer, M., Eslamy, M., Gliech, S., Seyfarth, A.: A comparison of parallel- and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In: International Conference on Robotics and Automation, pp. 2463–2470 (2012)

    Google Scholar 

  33. Heitmann, S., Breakspear, M., Ferns, N.: Muscle co-contraction modulates damping and joint stability in a three-link biomechanical limb. Front. Neurorobotics 11(5), 5 (2012)

    Google Scholar 

  34. Saha, M., Goswami, B., Ghosh, R.: Two novel costs for determining the tuning parameters of the Kalman filter. In: Proceedings of Advances in Control and Optimization of Dynamic Systems (ACODS-2012) (2011). eprint arXiv:1110.3895v2

  35. Esfandiari, R.S., Lu, B.: Modeling and Analysis of Dynamic Systems. CRC Press, 566 pp., 24 Apr 2014. ISBN: 1466574933, 9781466574939

    Google Scholar 

Download references

Acknowledgements

We would like to thank Ph.D. Fuben He and Prof. Yande Liang, which are with the School of Mechanical Engineering of the Dalian University of Technology, China. They contributed on the mechanical project and fabrication of the first prototype, as documented in references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bortoletto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bortoletto, R., Reilly, T., Pagello, E., Piovesan, D. (2017). An Underactuated Biped Robot Guided via Elastic Elements: EKF-Based Estimation of Ankle Mechanical Parameters. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48036-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48035-0

  • Online ISBN: 978-3-319-48036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics