Skip to main content

Synteny with Allied and Model Genomes

  • Chapter
  • First Online:
Book cover The Sorghum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Analysis of synteny is an integral part of comparative genomics inasmuch as it helps us to understand the structures and functions of genes in the related genomes in relation to genome evolution and their roles in gene expression. The identification of synteny blocks, the basic unit of genome synteny, may provide insights into the gene structure and regulation that are essential for biological processes. During earlier days, synteny blocks were identified through ad hoc methods that were slow, lacked reproducibility, ignored the conservation of gene order and orientation, and were not suitable for general applications. However, during the last decade, concerted efforts by several researchers have led to the development of a large volume of genomic data as well as computational resources that allow comparative genomic analysis between genomes of interest with high resolution. Comparative analysis of map-based genomic sequences led to the identification of shared intragenomic duplications, which provide important clues on the evolution of crop genomes from common ancestors. Recent studies in synteny analysis involve transcriptomic synteny to understand the functional conservation of orthologous genes and paleogenomic synteny to understand the role of whole-genome duplications on genome evolution. This chapter discusses the role of synteny analysis in comparative genomics; various computational tools employed for synteny analysis; synteny of sorghum with allied and model genomes with reference to molecular maps, markers, and the whole genome; emerging trends in synteny analysis; and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier E, Plomion C, Cooke R, Feuillet C, Salse J (2010) Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci 15(9):479–487

    Article  CAS  PubMed  Google Scholar 

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  CAS  PubMed  Google Scholar 

  • Aitken KS, McNeil MD, Berkman PJ, Hermann S, Kilian A, Bundock PC, Li J (2014) Comparative mapping in the Poaceae family reveals translocations in the complex polyploidy genome of sugarcane. BMC Plant Biol 14:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Israel I, Kilian B, Nida H, Fridman E (2012) Heterotic trait locus (HTL) mapping identifies intra-locus interactions that underlie reproductive hybrid vigor in Sorghum bicolor. PLoS ONE 7(6):e38993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomics: microcolinearity and its many exceptions. Plant Cell 12:1021–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JLH, Sarah C (2009) Handbook of maize, genetics and genomics. XII:800–894

    Google Scholar 

  • Binelli G, Gianfranceschi L, Pe ME, Taramino G, Busso C, Stenhouse J, Ottaviano E (1992) Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor Appl Genet 84:10–16

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blom J, Albaum S, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinform 10:154

    Article  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422(6930):433–438

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss RW, Chen AH, Edwards TM, Estill JC, Exum HE, Goff VH, Herrick KL, James Steele CL, Karunakaran S, Lafayette GK, Lemke C, Marler BS, Masters SL, McMillan JM, Nelson LK, Newsome GA, Nwakanma CC, Odeh RN, Phelps CA, Rarick EA, Rogers CJ, Ryan SP, Slaughter KA, Soderlund CA, Tang H, Wing RA, Paterson AH (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102(37):13206–13211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brendel V, Kurtz S, Pan X (2007) Visualization of syntenic relationships with SynBrowse. Methods Mol Biol 396:153–163

    Article  CAS  PubMed  Google Scholar 

  • Cai B, Yang X, Tuskan GA, Cheng ZM (2011) MicroSyn: a user friendly tool for detection of microsynteny in a gene family. BMC Bioinform 12:79

    Article  CAS  Google Scholar 

  • Cardoso-Silva CB, Costa EA, Mancini MC, Balsalobre TW, Canesin LE, Pinto LR, Carneiro MS, Garcia AA, de Souza AP, Vicentini R (2014) De Novo assembly and transcriptome analysis of contrasting sugarcane varieties. PLoS ONE 9(2):e88462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21(16):3422–3423

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZK, Buell CR, Wing RA, Gu MH, Jiang JM (2001) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa V, Angelini C, De Feis I, Ciccodicola A (2010) Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol 2010:853916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crabtree J, Angiuoli SV, Wortman JR, White OR (2007) Sybil: methods and software for multiple genome comparison and visualization. Methods Mol Biol 408:93–108

    Article  CAS  PubMed  Google Scholar 

  • Davidson RM, Hansey CN, Gowda M, Childs KL, Lin H, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Jiang N, Robin Buell C (2011) Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome 4:191–203

    Article  CAS  Google Scholar 

  • Davidson RM, Gowda M, Moghe G, Lin H, Vaillancourt B, Shiu SH, Jiang N, Robin Buell C (2012) Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Plant J 71:492–502

    CAS  PubMed  Google Scholar 

  • de Setta N, Monteiro-Vitorello CB, Metcalfe CJ, Cruz GM, Del Bem LE, Vicentini R, Nogueira FT, Campos RA, Nunes SL, Turrini PC, Vieira AP, Ochoa Cruz EA, Corrêa TC, Hotta CT, de Mello Varani A, Vautrin S, da Trindade AS, de Mendonça Vilela M, Lembke CG, Sato PM, de Andrade RF, Nishiyama MY Jr, Cardoso-Silva CB, Scortecci KC, Garcia AA, Carneiro MS, Kim C, Paterson AH, Bergès H, D’Hont A, de Souza AP, Souza GM, Vincentz M, Kitajima JP, Van Sluys MA (2014) Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genom 15:540

    Article  Google Scholar 

  • Derrien T, Andre C, Galibert F, Hitte C (2007) AutoGRAPH: an interactive web server for automating and visualizing comparative genome maps. Bioinformatics 23(4):498–499

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, Mckain MR, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci AM, Weissenbach J, Ruiz M, Glaszmann JC, Quétier F, Yahiaoui N, Wincker P (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  PubMed  CAS  Google Scholar 

  • Drillon G, Carbone A, Fischer G (2014) SynChro: a fast and easy tool to reconstruct and visualize synteny blocks along eukaryotic chromosomes. PLoS ONE 9(3):e92621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  CAS  Google Scholar 

  • Dufour P, Grivet L, D’Hont A, Deu M, Trouche G, Glaszmann JC, Hamon P (1996) Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane. Theor Appl Genet 92:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez AC, Galeano CH, Cichy K, Blair MW (2012) MapSynteny: creating images of synteny. In: Proceedings of international plant and animal genome conference XX, 14–18 January 2012, San Diego, CA, USA

    Google Scholar 

  • Figueira TRS, Okura V, da Silva FR, da Silva MJ, Kudrna D, Ammiraju JSS, Talag J, Wing R, Arruda P (2012) A BAC library of the SP80–3280 sugarcane variety (Saccharum sp.) and its inferred microsynteny with the sorghum genome. BMC Res Notes 5:185

    Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  CAS  PubMed  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  • Freeling M, Subramaniam S (2009) Conserved noncoding sequences (CNSs) in higher plants. Curr Opin Plant Biol 12:126–132

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS, Clark LG, Wendel JF, Muse SV (1997) Comparisons of the molecular evolutionary process at rbcL and ndhF in the grass family (Poaceae). Mol Biol Evol 14(7):769–777

    Article  CAS  PubMed  Google Scholar 

  • Ghiurcuta CG, Moret BME (2014) Evaluating synteny for improved comparative studies. Bioinformatics 30:i9–i18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel A, Taj G, Pandey D, Gupta S, Kumar A (2011) Genome-wide comparative in silico analysis of calcium transporters of rice and sorghum. Genom Proteom Bioinform 9(4–5):138–150

    Article  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawa K, Scott CE, Evans RS, Burridge PW, Cox TV, Fox CA, Hutton RD, Mullenger IR, Phillips KJ, Smith J, Stalker J, Threadgold GJ, Birney E, Wylie K, Chinwalla A, Wallis J, Hillier L, Carter J, Gaige T, Jaeger S, Kremitzki C, Layman D, Maas J, McGrane R, Mead K, Walker R, Jones S, Smith M, Asano J, Bosdet I, Chan S, Chittaranjan S, Chiu R, Fjell C, Fuhrmann D, Girn N, Gray C, Guin R, Hsiao L, Krzywinski M, Kutsche R, Lee SS, Mathewson C, McLeavy C, Messervier S, Ness S, Pandoh P, Prabhu AL, Saeedi P, Smailus D, Spence L, Stott J, Taylor S, Terpstra W, Tsai M, Vardy J, Wye N, Yang G, Shatsman S, Ayodeji B, Geer K, Tsegaye G, Shvartsbeyn A, Gebregeorgis E, Krol M, Russell D, Overton L, Malek JA, Holmes M, Heaney M, Shetty J, Feldblyum T, Nierman WC, Catanese JJ, Hubbard T, Waterston RH, Rogers J, de Jong PJ, Fraser CM, Marra M, McPherson JD, Bentley DR (2002) A physical map of the mouse genome. Nature 418:743–750

    Article  CAS  PubMed  Google Scholar 

  • Gui YJ, Zhou Y, Wang Y, Wang S, Wang SY, Hu Y, Bo SP, Chen H, Zhou CP, Ma NX, Zhang TZ, Fan LJ (2010) Insights into the bamboo genome: syntenic relationships to rice and sorghum. J Integr Plant Biol 52(11):1008–1015

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Delcher AL, Wortman JR, Salzberg SL (2004) DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20(18):3643–3646

    Article  CAS  PubMed  Google Scholar 

  • Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KF, Messing J (2005) Structure and architecture of the maize genome. Plant Physiol 139:1612–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793800

    Google Scholar 

  • Jean G, Nikolski M (2011) SyDiG: uncovering synteny in distant genomes. Int J Bioinform Res Appl 7(1):43–62

    Article  PubMed  Google Scholar 

  • Jiao Y, Jia P, Wang X, Su N, Yu S, Zhang D, Ma L, Feng Q, Jin Z, Li L, Xue Y, Cheng Z, Zhao H, Han B, Deng XW (2005) A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome level regulation of transcription. Plant Cell 17:1641–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto N, Higo H, Abe K, Arai S, Saito A, Higo K (1994) Identification of duplicated segment in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known function. Theor Appl Genet 88:722–726

    Article  CAS  PubMed  Google Scholar 

  • Klein PE, Klein RR, Vrebalov J, Mullet JE (2003) Sequence-based alignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and major chromosomal re-arrangement. Plant J 34:605–621

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Guo H, Goff VH, Lee TH, Kim C, Paterson AH (2014) Genetic analysis of vegetative branching in sorghum. Theor Appl Genet 127(11):2387–2403

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku HM, Liu J, Doganlarand S, Tanksley SD (2001) Exploitation of Arabidopsis-tomato synteny to construct a high resolution map of the ovate-containing region in tomato chromosome 2. Genome 44:470–475

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Mohan A, Balyan HS, Gupta PK (2009) Orthology between genomes of Brachypodium, wheat and rice. BMC Res Notes 2:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Chattopadhyay D, Prasad M (2013) Development of e-SSR markers in Setaria italica and their applicability in studying genetic diversity, cross transferability and comparative mapping in millet and non-millet species. PLoS ONE 8(6):e67742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo HY, Huo N, Lazo G, Ma Y, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106:15780–15785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Lyons E, Pedersen B, Kane J, Freeling M (2008) The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates rosids. Trop Plant Biol 1(3–4):181–190

    Article  CAS  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae. Genetics 167(4):1905–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahalakshmi V, Ortiz R (2001) Plant genomics and agriculture: From model organisms to crops, the role of data mining for gene discovery. Elec J Biotechnol 4(3):1–10

    Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClean PE, Mamidi S, McConnell M, Chikara S, Lee R (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genom 11:184

    Article  CAS  Google Scholar 

  • McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, Croft BJ, Jordan DR, Manners JM (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48(3):391–400

    Article  CAS  PubMed  Google Scholar 

  • Melake-Berhan A, Hulbert SH, Butler LG, Bennetzen JL (1993) Structure and evolution of the genomes of Sorghum bicolour and Zea mays. Theor Appl Genet 86:598–604

    Article  Google Scholar 

  • Meyer M, Munzner T, Pfister H (2009) MizBee: a multiscale synteny browser. IEEE Trans Vis Comput Graph 15(6):897–904

    Article  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5:37–739

    Article  Google Scholar 

  • Murat F, Xu JH, Tannier E, Abrouk M, Guihot N, Pont C, Messing J, Salse J (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20:1545–1557

    Google Scholar 

  • Nadeau J, Taylor B (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81:814–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagamura Y, Inoue T, Antonio BA, Shimano T, Kajiya H, Shomura A, Lin SY, Kuboki Y, Harushima Y, Kurata N, Minobe Y, Yano M, Sasaki T (1995) Conservation of duplicated segments between rice chromosome 11 and chromosome 12. Breed Sci 45:373–376

    CAS  Google Scholar 

  • Nussbaumer T (2014) CrowsNest: a tool to visualize synteny between plant genomes including recently published cereal genomes of Aegilops tauschii and Hordeum vulgare. In: Proceedings of the international plant and animal genome conference XXII, 11–15 January 2014, San Diego, CA, USA

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Book  Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, Dike S, de la Bastide M, Martienssen RA, McCombie WR (2003) Maize genome sequencing by methylation filtration. Science 302(5653):2115–2117

    Article  PubMed  Google Scholar 

  • Pan X, Stein L, Brendel V (2005) SynBrowse: a synteny browser for comparative sequence analysis. Bioinformatics 21(17):3461–3468

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101(26):9903–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Freeling M, Tang H, Wang X (2010) Insights from the comparison of plant genome sequences. Annu Rev Plant Biol 61:349–372

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Schertz KF, Cartinhour S, Hart GE (1999) Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235

    Article  CAS  Google Scholar 

  • Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37(2):236–243

    Article  CAS  PubMed  Google Scholar 

  • Ramu P, Kassahun B, Senthilvel S, Kumar CA, Jayashree B, Folkertsma RT, Reddy LA, Kuruvinashetti MS, Haussmann BIG, Hash CT (2009) Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet 119:1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Renwick JH (1971) The mapping of human chromosomes. Ann Rev Gen 5:81–120

    Article  CAS  Google Scholar 

  • Revanna KV, Chiu CC, Bierschank E, Dong Q (2011) GSV: a web-based genome synteny viewer for customized data. BMC Bioinformatics 12:316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter DC, Schuster SC, Huson DH (2007) OSLay: optimal syntenic layout of unfinished assemblies. Bioinformatics 23:1573–1579

    Article  CAS  PubMed  Google Scholar 

  • Ritter KB (2007) An investigation into the genetics and physiology of sugar accumulation in sweet sorghum as a potential model for sugarcane. PhD Thesis, School of Land, Crop and Food Sciences, University of Queensland, Australia

    Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2002) Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in ongoing rice genome sequencing project. Nucleic Acids Res 30:2316–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2004) New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409

    Article  CAS  PubMed  Google Scholar 

  • Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA 106:14908–14913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable JC, Lyons E (2011) Comparative genomics with maize and other grasses: from genes to genomes. Maydica 56:77–93

    Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108(10):4069–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shultz JL, Ray JD, Lightfoot DA (2007) A sequence based synteny map between soybean and Arabidopsis thaliana. BMC Genom 8:8

    Article  CAS  Google Scholar 

  • Simillion C, Janssens K, Sterck L, Van de Peer Y (2008) i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles. Bioinformatics 24(1):127–128

    Google Scholar 

  • Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, Ooi LC, Ooi SE, Chan KL, Halim MA, Azizi N, Nagappan J, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, DeSalle R, Kudrna D, Goicoechea JL, Wing RA, Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R (2013) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha AU, Meller J (2007) Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. BMC Bioinform 8:82

    Article  CAS  Google Scholar 

  • Sobral BWS, Braga DPV, LaHood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae griseb. subtribe of the Andropogoneae Dumort. tribe. Theor Appl Genet 87(7):843–853

    Article  CAS  PubMed  Google Scholar 

  • Soderlund C, Nelson W, Shoemaker A, Paterson A (2006) SyMAP: A system for discovering and viewing syntenic regions of FPC maps. Genome Res 16(9):1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderlund C, Nelson W, Shoemaker A, Paterson A (2011) SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res 39(10):e68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Srinivas G, Satish K, Murali Mohan S, Nagaraja Reddy R, Madhusudhana R, Balakrishna D, Venkatesh Bhat B, Howarth CJ, Seetharama N (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice. Theor Appl Genet 117:283–296

    Article  CAS  PubMed  Google Scholar 

  • Srinivasachary Dida MM, Gale MD, Devos KM (2007) Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes. Theor Appl Genet 115:489–499

    Article  CAS  PubMed  Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14(10):1916–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008a) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008b) Synteny and collinearity in plant genomes. Science 320:486–488

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Lyons E, Pedersen B, Schnable JC, Paterson AH, Freeling M (2011) Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinformatics 12:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang H, Cuevas HE, Das S, Sezen UU, Zhou C, Guo H, Goff VH, Ge Z, Clemente TE, Paterson AH (2013) Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. Proc Natl Acad Sci USA 110(39):15824–15829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • The International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. 345(6194):1251788

    Google Scholar 

  • The Rice Chromosomes 11 and 12 Sequencing Consortia (2005) The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol 3:20

    Google Scholar 

  • Timms L, Jimenez R, Chase M, Lavelle D, McHale L, Kozik A, Lai Z, Heesacker A, Knapp S, Rieseberg L, Michelmore R, Kesseli R (2006) Analyses of synteny between Arabidopsis thaliana and species in the Asteraceae reveal a complex network of small syntenic segments and major chromosomal rearrangements. Genetics 173:2227–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ureta-Vidal A, Ettwiller L, Birney E (2003) Comparative genomics: genomewide analysis in metazoan eukaryotes. Nat Rev Genet 4:251–262

    Article  CAS  PubMed  Google Scholar 

  • Vandepoele K, Saeys Y, Simillion C, Raes J, Van De Peer Y (2002) The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between Arabidopsis and rice. Genome Res 12:1792–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732

    Article  PubMed  CAS  Google Scholar 

  • Ventelon M, Deu M, Garsmeur O, Doligez A, Ghesquière A, Lorieux M, Rami JF, Glaszmann JC, Grivet L (2001) A direct comparison between the genetic maps of sorghum and rice. Theor Appl Genet 102:379–386

    Article  CAS  Google Scholar 

  • Vergara C, Caraballo L, Mercado D, Jimenez S, Rojas W, Rafaels N, Hand T, Campbell M, Tsai YJ, Gao L, Duque C, Lopez S, Bedoya G, Ruiz-Linares A, Barnes KC (2009) African ancestry is associated with risk of asthma and high total serum IgE in a population from the Caribbean Coast of Colombia. Hum Genet 125:565–579

    Article  CAS  PubMed  Google Scholar 

  • Vergara IA, Chen H (2010) Large synteny blocks revealed between Caenorhabditis elegans and Caenorhabditis briggsae genomes using OrthoCluster. BMC Genom 11:516

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Su Y, Mackey AJ, Kraemer ET, Kissinger JC (2006) SynView: a GBrowse-compatible approach to visualizing comparative genome data. Bioinformatics 22:2308–2309

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Shi XL, Hao BL, Ge S, Luo JC (2005) Duplication and DNA segmental loss in the rice genome: Implications for diploidization. New Phytol 165:937–946

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers J, Van Sluys MA, Rokhsar DS, Hudson ME, Moose SP, Paterson AH, Ming R (2010) Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genom 11:261

    Article  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z; Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40(7):e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3(7):e123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei F, Zhang J, Zhou S, He R, Schaeffer M, Collura K, Kudrna D, Faga BP, Wissotski M, Golser W, Rock SM, Graves TA, Fulton RS, Coe E, Schnable PS, Schwartz DC, Ware D, Clifton SW, Wilson RK, Wing RA (2009) The physical and genetic framework of the maize B73 genome. PLoS Genet 5(11):e1000715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei L, Liu Y, Dubchak I, Shon J, Park J (2002) Comparative genomics approaches to study organism similarities and differences. J Biomed Inform 35(2):142–150

    Article  CAS  PubMed  Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GK, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng X, Pei J, Vergara IA, Nesbitt MJ, Wang K, Chen N (2008) OrthoCluster: A new tool for mining syntenic blocks and applications in comparative genomics. In: Proceedings of the 11th international conferences on extending database technology (EDBT’08), Nantes, France, 25–30 March 2008

    Google Scholar 

  • Zhang W, Lee HR, Koo DH, Jiang J (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Kim DJ, Baek JM, Choi HK, Ellis LC, Kuester H, McCombie WR, Peng HM, Cook DR (2003) Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol 131:1018–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajendrakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rajendrakumar, P. (2016). Synteny with Allied and Model Genomes. In: Rakshit, S., Wang, YH. (eds) The Sorghum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-47789-3_6

Download citation

Publish with us

Policies and ethics