Skip to main content

TILLING and EcoTILLING for Discovery of Induced and Natural Variations in Sorghum Genome

  • Chapter
  • First Online:
The Sorghum Genome

Abstract

TILLING is a reverse-genetic method to uncover the induced variation from the mutagenized population. Initially induced variation was detected by melting and reannealing the PCR products, cleavage of heteroduplex using CEL I endonucleases, and the resulting products separated and visualized on sequencing gels or capillaries. Subsequent sequence analysis in heteroduplex regions of individual plant DNA identified the mutation. In the past 6 years, mutation discovery through sequencing is becoming popular. Sequencing-based TILLING is less labor intensive with high specificity and confidence of mutation discovery. TILLING by sequencing has been reported in many crop plants including rice and wheat and is yet to be applied in sorghum. A conventional TILLING project has been reported in sorghum for agronomically important traits and also for the development of acyanogenic or low cyanogenic mutants in sorghum. EcoTILLING is another reverse-genetic approach that utilizes the same principles in the natural population instead of the mutagenized population. In this chapter, we discuss TILLING and EcoTILLING in sorghum and also TILLING by sequencing for the improvement of sorghum through the reverse-genetic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Able JA, Rathus C, Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. Vitro Cell Dev Biol Plant 37:341–348

    Article  CAS  Google Scholar 

  • Abu Assar AH, Uptmoor R, Abdelmula AA, Salih M, Ordon F, Friedt W (2005) Genetic variation in sorghum germplasm from Sudan, ICRISAT, and USA assessed by simple sequence repeats (SSRs). Crop Sci 45:1636–1644

    Article  Google Scholar 

  • Anas, Yoshida T (2004) Sorghum diversity evaluated by simple sequence repeat (SSR) markers and phenotypic performance. Plant Prod Sci 7:301–308

    Google Scholar 

  • Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genomics 9:212–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauchet G (2002) EcoTILLING on tomato core collections for brix: Implementing the methodology and first results. Master Thesis, Wageningen University, The Netherlands

    Google Scholar 

  • Blomstedt CK, Gleadow RM, O’Donnell N, Naur P, Jensen K, Laursen T, Olsen CE, Stuart P, Hamill JD, Møller BL, Neale AD (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66

    Article  PubMed  Google Scholar 

  • Brady SM, Provart NJ (2007) Extreme breeding: leveraging genomics for crop improvement. J Sci Food Agric 87:925–929. doi:10.1002/jsfa.2763

    Article  CAS  Google Scholar 

  • Cai T, Butler L (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell Tiss Org Cult 20:101–110

    Article  Google Scholar 

  • Cai T, Daly B, Butler L (1987) Callus induction and plant regeneration from shoot portions of mature embryos of high-tannin sorghum. Plant Cell Tiss Org Cult 9:245–252

    Article  Google Scholar 

  • Carvalho CH, Boddu J, Zehr UB, Axtell JD, Pedersen JF, Chopra S (2005) Genetic and molecular characterization of Candystripel transposition events in sorghum. Genetica 124:201–212

    Article  PubMed  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90:11212–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra S, Brendel V, Zhang J, Axtell JD, Peterson T (1999) Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci USA 96:15330–15335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37(5): 778–786

    Google Scholar 

  • Dahlberg JA, Spinks M (1995) Current status of the U. S. sorghum germplasm collection. Sorghum Newsl 36:4–11

    Google Scholar 

  • Deu M, Rattunde F, Chantereau J (2006) A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49:168–180

    CAS  PubMed  Google Scholar 

  • Eberhart SA, Bramel Cox PJ, Prasada Rao KE (1997) Preserving genetic resources. IPages 25–41. In: Proceedings of the international conference on genetic improvement of sorghum and pearl millet, Holiday Inn Plaza, Lubbock, Texas. Lincoln, Nebraska, USA: INTSORMIL/ICRISAT, pp 25–41. 22–27 Sep 1996

    Google Scholar 

  • Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192

    Article  CAS  Google Scholar 

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb LD (1984) Genetics and morphological evolution in plants. Am Nat 123:681–709

    Article  Google Scholar 

  • Graham R, Liew M, Meadows C, Lyon E, Wittwer CT (2005) Distinguishing different DNA heterozygotes by high-resolution melting. Clin Chem 51:1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Greene EA, Codomo A, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    Google Scholar 

  • Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54:375–401

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler HF, Pederson JF (1997) Evaluation of 41 elite and exotic inbred Sorghum genotypes for high quality callus production. Plant Cell Tiss Org Cult 48:71–75

    Article  Google Scholar 

  • Kayode APP, Linnemann AR, Nout MJR, Hounhouigan JD, Stomph TJ, Smulders MJM (2006) Diversity and food quality properties of farmers’ varieties of sorghum from Benin. J Sci Food Agri 86:1032–1039

    Article  CAS  Google Scholar 

  • Knoll J, Chu Y, Holbrook CC, Ozias-Akins P (2009) Genetic modification of Arachis hypogaea for quality traits. In: Proceedings 4th international conference on advances in Arachis through genomics and biotechnology, p 35

    Google Scholar 

  • Kresovich S, McGee RE, Panella L, Reilley AA, Miller FR (1987) Application of cell and tissue culture techniques for the genetic improvement of sorghum, Sorghum bicolor (L.) Moench: progress and potential. Adv Agron 41:147–170

    Google Scholar 

  • Ma H, Liang GH (1987) Plant regeneration from cultured immature embryos of Sorghum bicolor (L.) Moench. Theor Appl Genet 73:389–394

    Article  CAS  PubMed  Google Scholar 

  • Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11:559–565

    Article  CAS  PubMed  Google Scholar 

  • Masteller VJ, Holden DJ (1970) The growth and organ formation from callus tissue of sorghum. Plant Physiol 45:362–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum CM, Comai L, Elizabeth A, Greene SH (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458

    Article  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812

    Google Scholar 

  • Nida H, Blum S, Zielinski D, Srivastava DA, Elbaum R, Xin Z, Erlich Y, Fridman E, Shental N (2016) Highly efficient de novo mutant identification in a Sorghum bicolor TILLING population using the ComSeq approach. Plant J Accepted Author Manuscript. doi:10.1111/tpj.13161

    Google Scholar 

  • Rosenow DT, Dahlberg JA (2000) Collection, conversion, and utilization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, USA, pp 309–328

    Google Scholar 

  • Sharma R, Rao VP, Upadhyaya HD, Reddy VG, Thakur RP (2009) Resistance to grain mold and downy mildew in a mini core collection of sorghum germplasm. Plant Dis 94(4):439–444

    Article  Google Scholar 

  • Sim S, Ramirez JL, Dimopoulos G (2012) Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus Induces Genes that modulate infection and blood-feeding behavior. PLoS Pathog 8(3):e1002631

    Google Scholar 

  • Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stemple DL (2004) TILLING—a high-throughput harvest for functional genomics. Nat Rev Genet 5:145–150

    Article  CAS  PubMed  Google Scholar 

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microprojectile bombardment. Plant Cell Tiss Org Cult 75:1–18

    Article  CAS  Google Scholar 

  • Till BJ, Reynolds EA, Greene CA, Codomo LC, Enns JE, Johnson C, Burtner AR, Odden K, Young NE, Taylor JG, Henikoff S, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Google Scholar 

  • Tissier A, Bourgeois P (2001) Reverse genetics in plants. Curr Genomics 2:269–284

    Google Scholar 

  • Tsai H, Tyson H, Rebecca N, Victor M, Brian W et al (2011) Discovery of Rare Mutations in Populations: TILLING by Sequencing. Plant Physiol 156:1257–1268

    Google Scholar 

  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180(4):751–765

    Article  CAS  PubMed  Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin Z, Wang M, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. Bioenergy Res 2:10–16

    Article  Google Scholar 

  • Zhao Z, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Plant Breed 52:243–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaram Ganesh Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Bharathi Raja, R., Agasimani, S., Anusheela, V., Thiruvengadam, V., Chibbar, R.N., Ganesh Ram, S. (2016). TILLING and EcoTILLING for Discovery of Induced and Natural Variations in Sorghum Genome. In: Rakshit, S., Wang, YH. (eds) The Sorghum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-47789-3_14

Download citation

Publish with us

Policies and ethics