Skip to main content

University-Industry Relationships for the Development and Commercialization of Biosensors

Handbook of Cell Biosensors
  • 295 Accesses

Abstract

Cell-based biosensing is a significant part of the biosensor research, presenting many advantages for both, university research and industrial development. With some products already in the market, the majority of the university-produced technology remains largely unexploited. The present work uses the huge scientific (academic output) and technical (patent applications) literature on the subject in order to study the cell-based biosensor innovation system. Emphasis is given on the science and the technology base in an attempt to highlight the most prominent and promising research pathways toward the industry. The results provide two possible direct links between the university and the industry: nano-bioelectronics technology for environmental whole cell biosensing and synthetic biology tools for clinical detection. A new pathway just emerging may become a significant link in the near future: cell-mimicking artificial cells; future applications may actually include the entire range of biosensor research scope: site-specific and intended-use optimized detectors for infield and online simultaneous monitoring of a large number of target analytes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aisyah WN, Jusoh W, Wong LS (2014) Exploring the potential of whole cell biosensor: a review in environmental applications. Int J Chem Environ Biol Sci 2:52–56

    Google Scholar 

  • Andersen PD, Jørgensen BH, Lading L, Rasmussen B (2004) Sensor foresight – technology and market. Technovation 24:311–320

    Article  Google Scholar 

  • Bahadir EB, Sezgintürk MK (2015) Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem 478:107–120

    Article  CAS  Google Scholar 

  • Batzias FA, Siontorou CG (2012) Creating a specific domain ontology for supporting R&D in the science-based sector – the case of biosensors. Expert Syst Appl 39:9994–10015

    Article  Google Scholar 

  • Ben-Yoav H, Biran A, Sternheim M, Belkin S, Freeman A, Shacham-Diaman Y (2013) Functional modeling of electrochemical whole-cell biosensors. Sens Actuators B Chem 181:479–485

    Article  CAS  Google Scholar 

  • Chang Y-C, Yang PY, Chen M-H (2009) The determinants of academic research commercial performance: towards an organisational ambidexterity perspective. Res Policy 38:936–946

    Article  Google Scholar 

  • Chang H-J, Voyvodic PL, Zuniga A, Bonnet J (2017) Microbially derived biosensors for diagnosis, monitoring and epidemiology. Microb Biotechnol 10:1031–1035

    Article  Google Scholar 

  • Cockburn I, Long G (2015) The importance of patents to innovation: updated cross-industry comparisons with biopharmaceuticals. Expert Opin Ther Pat 25:739–742

    Article  CAS  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Article  Google Scholar 

  • Debackere K, Veugelers R (2005) The role of academic technology transfer organizations in improving industry science links. Res Policy 34:321–342

    Article  Google Scholar 

  • Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  Google Scholar 

  • Duan X, Lieber CM (2015) Nanoscience and the nano-bioelectronics frontier. Nano Res 8:1–22

    Article  Google Scholar 

  • Fagerberg J, Verspagen B (2009) Innovation studies – the emerging structure of a new scientific field. Res Policy 38:218–233

    Article  Google Scholar 

  • Goldberg AP, Szigeti B, Chew YH, Sekar JAP, Roth YD, Karr JR (2018) Emerging whole-cell modeling principles and methods. Curr Opin Biotechnol 51:97–102

    Article  CAS  Google Scholar 

  • González-Cabaleiro R, Mitchell AM, Smith W, Wipat A, Ofiţeru ID (2017) Heterogeneity in pure microbial systems: experimental measurements and modeling. Front Microbiol 8:1813

    Article  Google Scholar 

  • Guerzoni M, Aldridge TT, Audretsch DB, Desai S (2014) A new industry creation and originality: insight from the funding sources of university patents. Res Policy 43:1697–1706

    Article  Google Scholar 

  • Hanberger A, Schild I (2004) Strategies to evaluate a university–industry knowledge-exchange programme. Evaluation 10:475–492

    Article  Google Scholar 

  • Jarque S, Bittner M, Blaha L, Hilscherova K (2016) Yeast biosensors for detection of environmental pollutants: current state and limitations. Trends Biotechnol 34:408–419

    Article  CAS  Google Scholar 

  • Kou S, Cheng D, Sun F, Hsing I-M (2016) Microfluidics and microbial engineering. Lab Chip 16:432–446

    Article  CAS  Google Scholar 

  • Lee PC, Su HN (2011) Quantitative mapping of scientific research-the case of electrical conducting polymer nanocomposite. Technol Forecast Soc Change 78:132–151

    Article  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  Google Scholar 

  • Lim JW, Ha D, Lee J, Lee SK, Kim T (2015) Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 3:61

    Article  Google Scholar 

  • Lowe J (1993) Commercialization of university research: a policy perspective. Technol Anal Strat Manag 5:27–37

    Article  Google Scholar 

  • Melamed S, Elad T, Belkin S (2012) Microbial sensor cell arrays. Curr Opin Biotechnol 23:2–8

    Article  CAS  Google Scholar 

  • Mogoutov A, Kahane B (2007) Data search strategy for science and technology emergence: a scalable and evolutionary query for nanotechnology tracking. Res Policy 36:893–903

    Article  Google Scholar 

  • Mongra AC, Kaur A (2012) Overview of biosensors development around the world. Int J Biomed Adv Res 3:519–530

    Google Scholar 

  • Mowery DC, Nelson RR, Sampat B, Ziedonis AA (1999) The effects of the Bayh-Dole Act on US university research and technology transfer: an analysis of data from Columbia University, the University of California, and Stanford University. Res Policy 29:729–740

    Google Scholar 

  • Newman MEJ (2004) Co-authorship networks and patterns of scientific collaboration. Proc Natl Acad Sci USA 101:5200–5205

    Article  CAS  Google Scholar 

  • Oliveira MG, Rozenfeld H (2010) Integrating technology roadmapping and portfolio management at the front-end of new product development. Technol Forecast Soc Change 77:1339–1354

    Article  Google Scholar 

  • Pandza K, Holt R (2007) Absorptive and transformative capacities in nanotechnology innovation systems. J Eng Technol Manage 24:347–365

    Article  Google Scholar 

  • Park M, Tsai S-L, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13:5777–5795

    Article  CAS  Google Scholar 

  • Patel PD (2005) (Bio)sensors for measurement of analytes implicated in food safety: a review. TRAC Trend Anal Chem 21:96–115

    Article  Google Scholar 

  • Perkmann M, Walsh K (2007) University–industry relationships and open innovation: towards a research agenda. Int J Manag Rev 9:259–280

    Article  Google Scholar 

  • Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244

    Article  CAS  Google Scholar 

  • Siontorou CG, Batzias FA (2010) Innovation in biotechnology: moving from academic research to product development – the case of biosensors. Crit Rev Biotechnol 30:79–98

    Article  CAS  Google Scholar 

  • Siontorou CG, Batzias FA (2013) A methodological combined framework for roadmapping biosensor research: a fault tree analysis approach within a strategic technology evaluation frame. Crit Rev Biotechnol 34:31–55

    Article  Google Scholar 

  • Siontorou CG, Batzias FA, Tsakiri V (2010) A knowledge-based approach to online fault diagnosis of FET biosensors. IEEE Trans Instrum Meas 59:2345–2364

    Article  CAS  Google Scholar 

  • Siontorou CG, Georgopoulos KN, Nalantzi M-M (2017a) Designing biosensor networks for environmental risk assessment of aquatic systems. Crit Rev Environ Sci Technol 47:40–63

    Article  CAS  Google Scholar 

  • Siontorou CG, Keramidas VT, Nikoleli G-P, Nikolelis DP, Karapetis S, Bratakou S, Tzamtzis N (2017b) Nano-enabled medical devices based on biosensing principles: technology basis and new concepts. AIMS Mater Sci 4:250–266

    Article  Google Scholar 

  • Stenger DA, Gross GW, Keefer EW, Shaffer KM, Andreadis JD, Ma W, Pancrazio JJ (2001) Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol 19:304–308

    Article  CAS  Google Scholar 

  • Struss A, Pasini P, Ensor CM, Raut N, Daunert S (2010) Paper strip whole cell biosensors: a portable test for the semi quantitative detection of bacterial quorum signaling molecules. Anal Chem 82:4457–4463

    Article  CAS  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    Article  CAS  Google Scholar 

  • Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 99:12795–12800

    Article  CAS  Google Scholar 

  • Tomita M (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 19:205–210

    Article  CAS  Google Scholar 

  • Tzoris A, Hall EAH (2006) Rapid detection of toxicity in wastewater: recent developments with manometric respirometry. Anal Chim Acta 573–574:147–157

    Article  Google Scholar 

  • Vaiopoulou E, Melidis P, Kampragou E, Aivasidis A (2005) On-line load monitoring of wastewaters with a respirographic microbial sensor. Biosens Bioelectron 21:365–371

    Article  CAS  Google Scholar 

  • Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, Stephanopoulos G (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32:473–478

    Article  CAS  Google Scholar 

  • Xu C, Hu S, Chen X (2016) Artificial cells: from basic science to applications. Mater Today 19:516–532

    Article  CAS  Google Scholar 

  • Xu M, Wang R, Li Y (2017) Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 162:511–522

    Article  CAS  Google Scholar 

  • Yoo SM, Lee SY (2016) Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol 34:7–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina G. Siontorou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Siontorou, C.G. (2019). University-Industry Relationships for the Development and Commercialization of Biosensors. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    University-Industry Relationships for the Development and Commercialization of Biosensors
    Published:
    06 May 2020

    DOI: https://doi.org/10.1007/978-3-319-47405-2_25-2

  2. Original

    University-Industry Relationships for the Development and Commercialization of Biosensors
    Published:
    15 February 2019

    DOI: https://doi.org/10.1007/978-3-319-47405-2_25-1