Skip to main content

Environmental Biosensors: A Microbiological View

  • Living reference work entry
  • First Online:
  • 240 Accesses

Abstract

In this mini-review, the potential of using microorganisms to design biosensors for detecting environmental pollutants is analyzed and discussed. A distinction is made between a classical biosensor (CB) and a whole-cell biosensor (WCB), emphasizing their structural components and the possibility of using whole microorganisms as their bioreceptor elements. The advantages and disadvantages of using prokaryotic microorganisms as opposed to eukaryotic microorganisms are described. Likewise, the advantages of using protozoa (ciliates) over other eukaryotic microorganisms are also shown. We analyze the current bibliography on biosensors built on microorganisms as bioreceptors of pollutant molecules, such as inorganic (metal(loid)s) or organic (xenobiotics). New trends, such as the prokaryotic riboswitches, microbial two-component systems where the pollutant can be simultaneously detected and bioremediated, along with advances in synthetic biology, are shown as promising tools in the design of environmental biosensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

References

  • Adeniran A, Sherer M, Tyo KEJ (2015) Yeast-based biosensors: design and applications. FEMS Yeast Res 15:1–15

    Article  CAS  PubMed  Google Scholar 

  • Aksmann A, Pokora W, Bascik-Remisiewicz A et al (2014) Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Ecotoxicol Environ Saf 110C:31–40

    Article  CAS  Google Scholar 

  • Amaro F, Turkewitz AP, Martin-Gonzalez A et al (2011) Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila. Microb Biotechnol 4:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaro F, Turkewitz AP, Martin-Gonzalez A et al (2014) Functional GFP-metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. Biometals 27:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aury JM, Jaillon O, Duret L et al (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178

    Article  CAS  PubMed  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    Article  CAS  PubMed  Google Scholar 

  • Berezhetskyy AL, Sosovska OF, Durrieu C et al (2008) Alkaline phosphatase conductometric biosensor for heavy metal ions determination. IRBM 29:136–140

    Article  Google Scholar 

  • Bernard E, Wang B (2017) Synthetic cell-based sensors with programmed selectivity and sensitivity. In: Rasooly A, Prickril B (eds) Biosensors and biodetection: methods and protocols. Methods in molecular biology, vol 1572. Springer, New York, pp 343–363

    Chapter  Google Scholar 

  • Beyersdorf-Radeck B, Karlson KR, Bachmann TT et al (1998) Screening of xenobiotic compounds degrading microorganisms using biosensor techniques. Microbiol Res 153:239–245

    Article  CAS  PubMed  Google Scholar 

  • Branco R, Cristovao A, Morais PV (2013) Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PLoS One 8:e54005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caceres JO, Sanz-Mangas D, Manzoor S et al (2019) Quantification of particulate matter, tracking the origin and relationship between elements for the environmental monitoring of the Antarctic region. Sci Tot Env 665:125–132

    Article  CAS  Google Scholar 

  • Cerminati S, Soncini FC, Checa SK (2011) Selective detection of gold using genetically engineered bacterial reporters. Biotechnol Bioeng 108:2553–2560

    Article  CAS  PubMed  Google Scholar 

  • Chouteau C, Dzyadevych S, Chovelon JM et al (2004) Development of novel conductometric biosensors based on immobilized whole cell Chlorella vulgaris microalgae. Biosens Bioelectron 19:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Corbisier P, van der Lelie D, Borremans B et al (1999) Whole cell-and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244

    Article  CAS  Google Scholar 

  • De Schamphelaere KAC, Nys C, Janssen CR (2014) Toxicity of lead (Pb) to freshwater green algae: development and validation of a bioavailability model and inter-species sensitivity comparison. Aquat Toxicol 155:348–359

    Article  PubMed  CAS  Google Scholar 

  • Diaz S, Martin-Gonzalez A, Cubas L et al (2016) High resistance of Tetrahymena thermophila to paraquat: mitochondrial alterations, oxidative stress and antioxidant genes expression. Chemosphere 144:909–917

    Article  CAS  PubMed  Google Scholar 

  • Diels L, Van Roy S, Taghavi S et al (2009) From industrial sites to environmental applications with Cupriavidus metallidurans. A Leeuwenhoek 96:247–258

    Article  Google Scholar 

  • Edwards AL, Batey RT (2010) Riboswitches: a common RNA regulatory element. Nat Educ 3(9):9

    Google Scholar 

  • Eisen JA, Coyne RS, Wu M et al (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:e286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erbe JL, Adams AC, Taylor KB et al (1996) Cyanobacteria carrying an smt-lux transcriptional fusion as biosensors for the detection of heavy metal cations. J Ind Microbiol 17:80–83

    Article  CAS  PubMed  Google Scholar 

  • Findei BS, Etzel M, Will S et al (2017) Design of artificial riboswitches as biosensors. Sensors 17:1–28. https://doi.org/10.3390/s17091990

    Article  CAS  Google Scholar 

  • Guascito MR, Malitesta C, Mazzotta E et al (2008) Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor: study of the effect of hydrogen peroxide decomposition. Sens Actuators B Chem 131:394–402

    Article  CAS  Google Scholar 

  • Gutierrez JC, Martin-Gonzalez A, Diaz S et al (2003) Ciliate as potential source of cellular and molecular biomarker/biosensors for heavy metal pollution. Eur J Protistol 39:461–467

    Article  Google Scholar 

  • Gutierrez JC, Martin-Gonzalez A, Diaz S et al (2008) Ciliates as cellular tools to study the eukaryotic cell-heavy metal interactions. In: Brown SE, Welton WC (eds) Heavy metal pollution. Nova Science Publishers, New York, pp 1–44

    Google Scholar 

  • Gutierrez JC, Amaro F, Diaz S et al (2011) Ciliate metallothioneins: unique microbial eukaryotic heavy-metal-binder molecules. J Biol Inorg Chem 16:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JC, Amaro F, Martin-Gonzalez A (2015) Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol 6:1–8

    Google Scholar 

  • Gutierrez JC, Amaro F, Martin-Gonzalez A (2017) Microbial biosensors for metal(loid)s. In: Cravo-Laureau C et al (eds) Microbial ecotoxicology. Springer International Publishing AG, Cham, pp 313–336

    Chapter  Google Scholar 

  • Hill MK (2004) Understanding environmental pollution. A primer. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hou Q, Ma A, Wang T et al (2015) Detection of bioavailable cadmium, lead and arsenic in polluted soil by tailored multiple Escherichia coli whole-cell sensor set. Anal Bioanal Chem 407:6865–6871

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Li L, Wang Y et al (2010) Construction of WCB-11: a novel phiYFP arsenic-resistant whole-cell biosensor. J Environ Sci 22:1469–1474

    Article  CAS  Google Scholar 

  • Huang CW, Yang SH, Sun MW et al (2015) Development of a set of bacterial biosensors for simultaneously detecting arsenic and mercury in groundwater. Environ Sci Pollut Res Int 22:10206–10213

    Article  CAS  PubMed  Google Scholar 

  • Huse SM, Welch DM, Morrison HG et al (2010) Ironing out the wrinkles in the rare biosphere through improved OUT clustering. Environ Microbiol 12:1889–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilangovan R, Daniel D, Krastanov A et al (2006) Enzyme based biosensor for heavy metal ions determination. Biotechnol Equip 20:184–189

    Article  CAS  Google Scholar 

  • Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9:41. https://doi.org/10.1186/1472-6750-9-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia X, Bur R, Zhao T et al (2019) Development of a sensitive and specific whole-cell biosensor for arsenic detection. Appl Environ Microbiol 85:e00694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanneau S, Durand MJ, Assaf A et al (2017) Bacterial bioreporter applications in ecotoxicology: concepts and practical approach. In: Cravo-Laureau C et al (eds) Microbial ecotoxicology. Springer International Publishing AG, Cham, pp 283–311

    Chapter  Google Scholar 

  • Jung Y, Park C-B, Kim Y et al (2015) Application of multi-species microbial bioassay to assess the effects of engineered nanoparticles in the aquatic environment; potential of a luminous microbial array for toxicity risk assessment (LumiRAMA) on testing for surface-coated silver nanoparticles. Int J Environ Res Public Health 12:8172–8186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR et al (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. PNAS 109:16213–16216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Lee W, Kim S (2018) Enhancing the Cu-sensing capability of E. coli-based WCB by genetic engineering. Appl Microbiol Biotechnol 102:1513–1521

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Lim JW, Jeong H et al (2016) Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens Bioelectron 79:701–708

    Article  CAS  PubMed  Google Scholar 

  • Kröger S, Law RJ (2005) Biosensors for marine applications. We all need the sea, but does the sea need biosensors? Biosens Bioelectron 20:1903–1913

    Article  PubMed  CAS  Google Scholar 

  • Kumar J, D’souza SF (2010) An optical microbial for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent. Biosens Bioelectron 26:1292–1296

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Sode K, Nakanishi K et al (1992) A novel microbial sensor using luminous bacteria. Biosens Bioelectron 7:273–277

    Article  CAS  PubMed  Google Scholar 

  • Lehmann M, Riedel K, Adler K et al (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosens Bioelectron 15:211–219

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Mulchandani P, Chen W et al (2007) Biosensor for direct determination of Fenitrothion and EPN using recombinant Pseudomonas putida js444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. Appl Biochem Biotechnol 136:243–250

    Article  CAS  PubMed  Google Scholar 

  • Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37(12):1921–1942

    Article  CAS  PubMed  Google Scholar 

  • Leth S, Maltoni S, Simkus R et al (2002) Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis 14:35–42

    Article  CAS  Google Scholar 

  • Li L, Liang J, Hong W et al (2015) Evolved bacterial biosensor for arsenite detection in environmental water. Environ Sci Technol 49:6149–6155

    Article  CAS  PubMed  Google Scholar 

  • Lünse CE, Schmidt MS, Wittmann V (2011) Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem Biol 6:675–678

    Article  PubMed  CAS  Google Scholar 

  • Machtel P, Bakowska-Zywicka K, Zywicki M (2016) Emerging applications of riboswitches-from antibacterial targets to molecular tools. J Appl Genet 57:531–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magrisso S, Erel Y, Belkin S (2008) Microbial reporter of metal bioavailability. Microb Biotechnol 1:320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Betancor K, Rodea-Palomares I, Muñoz-Martín MA (2015) Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environment. Front Microbiol 6:186. https://doi.org/10.3389/fmicb.2015.00186

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin-Gonzalez A, Diaz S, Jareño C et al (1999) The use of protists in ecotoxicology. Recent Res Dev Microbiol 3:93–111

    CAS  Google Scholar 

  • McCown PJ, Corbino KA, Stav S (2017) Riboswitch diversity and distribution. RNA 23:995–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T et al (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  CAS  PubMed  Google Scholar 

  • Merulla D, van der Meer JR (2016) Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synth Biol 5:36–45

    Article  CAS  PubMed  Google Scholar 

  • Metha J, Bhardwaj SK, Bhardwaj N et al (2016) Progress in the biosensing techniques for trace – level heavy metals. Biotechnol Adv 34:47–60

    Article  CAS  Google Scholar 

  • Nguyen-Ngoc H, Durrieu C, Tran-Minh C (2009) Synchronous-scan fluorescence of algal cells for toxicology of heavy metals and herbicides. Ecotoxicol Environ Saf 72:316–320

    Article  CAS  PubMed  Google Scholar 

  • Niazi JH, Kim BC, Ahn J-M et al (2008) A novel bioluminescent bacterial biosensor using the highly specific oxidative stress-inducible pgi gene. Biosens Bioelectron 24:670–675

    Article  CAS  PubMed  Google Scholar 

  • Park JN, Sohn MJ, Oh DB (2007) Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl Environ Microbiol 73:5990–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña-Vazquez E, Perez-Conde C, Costas E et al (2010) Development of a microalgal PAM test method for Cu(II) in waters: comparison of using spectrofluorometry. Ecotoxicology 19:1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas J, Fillela I (2002) Metal pollution in Spanish terrestrial ecosystems during the twentieth century. Chemosphere 46:501–505

    Article  PubMed  Google Scholar 

  • Prathap MUA, Chaurasia AK, Sawant SN et al (2012) Polyaniline-based highly sensitive biosensor for selective detection of lindane. Anal Chem 15:6672–6678

    Article  CAS  Google Scholar 

  • Preveral S, Brutesco C, Descamps EC et al (2017) A bioluminescent arsenite biosensor designed for inline water analyzer. Environ Sci Pollut Res Int 24:25–32

    Article  CAS  PubMed  Google Scholar 

  • Radhika V, Milkevitch M, Audigé V et al (2005) Engineered Saccharomyces cerevisiae strain BioS-1, for the detection of water-borne toxic metal contaminants. Biotechnol Bioeng 90:29–35

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar S, Yoo IK, Lee SY et al (2011) Construction of cooper removing bacteria through the integration of two-component system and cell surface display. Appl Biochem Biotechnol 165:1674–1681

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar S, Baylon MG, Park SJ (2017) Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Factories 16:62. https://doi.org/10.1186/s12934-017-0675-z

    Article  CAS  Google Scholar 

  • Roda A, Roda B, Cevenini L (2011) Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Anal Bioanal Chem 401:201–211

    Article  CAS  PubMed  Google Scholar 

  • Samphao A, Rerkchai H, Jitcharoen J et al (2012) Indirect determination of mercury by inhibition of glucose oxidase immobilizated on carbon paste electrode. Int J Electrochem 7:1001–1010

    CAS  Google Scholar 

  • Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahsavari E, Aburto-Medina A, Khudur LD et al (2017) From microbial ecology to microbial ecotoxicology. In: Cravo-Laureau C et al (eds) Microbial ecotoxicology. Springer International Publishing AG, Cham, pp 17–38

    Chapter  Google Scholar 

  • Sharma P, Asad S, Ali A (2013) Bioluminescent bioreporter for assessment of arsenic contamination in water samples of India. J Biosci 38:251–258

    Article  CAS  PubMed  Google Scholar 

  • Shetty RS, Deo SK, Liu Y et al (2004) Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol Bioeng 88:664–670

    Article  CAS  PubMed  Google Scholar 

  • Shing WL, Surif S, Heng LY (2008) Toxicity biosensor for the evaluation of cadmium toxicity based on photosynthetic behavior of cyanobacteria Anabaena torulosa. Asian J Biochem 3:162–168

    Article  CAS  Google Scholar 

  • Shitanda I, Takada K, Sakai Y et al (2005) Amperometric biosensing systems based on motility and gravitaxis of flagellate algae for aquatic risk assessment. Anal Chem 77:6715–6718

    Article  CAS  PubMed  Google Scholar 

  • Sperling L, Dessen P, Zagulski M et al (2002) Random sequencing of paramecium somatic DNA. Eukaryot Cell 1:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tag K, Riedel K, Bauer HJ et al (2007) Amperometric detection of Cu2+ by yeast biosensors using flow injection analysis (FIA). Sens Act B Chem 122:403–409

    Article  CAS  Google Scholar 

  • Tauriainen S, Karp M, Chang W et al (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938

    Article  CAS  PubMed  Google Scholar 

  • Terziyska A, Waltschewa L, Venkov P (2000) A new sensitive test based on yeast cells for studying environmental pollution. Environ Pollut 109:43–52

    Article  CAS  PubMed  Google Scholar 

  • Tibazarwa C, Wuertz S, Mergeay M et al (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1399–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibazarwa C, Corbisier P, Mench M et al (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26

    Article  CAS  PubMed  Google Scholar 

  • Tseng H-W, Tsai Y-J, Yen J-H, Chen P-H et al (2014) A fluorescence-based microbial sensor for the selective detection of gold. Chem Commun 50:1735–1737

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and application of reporter bacteria. Nat Rev Microbiol 8:511–522

    Article  PubMed  CAS  Google Scholar 

  • Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18:121–129

    Article  CAS  PubMed  Google Scholar 

  • Vopálenská I, Váchová L, Palková Z (2015) New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells. Biosens Bioelectron 72:160–167

    Article  PubMed  CAS  Google Scholar 

  • Walmsley RM, Keenan P (2000) The eukaryotic alternative: advantages of using yeasts in place of bacteria in microbial biosensor development. Biotechnol Bioprocess Eng 5:387–394

    Article  CAS  Google Scholar 

  • Wan X, Ho T, Wang B (2019a) Engineering prokaryote synthetic biology biosensors. In: Handbook of cell biosensors. Springer Nature. https://doi.org/10-1007/978-3-319-47405-2_131-1

  • Wan X, Volpetti F, Petrova E, French C, Maerkl SJ, Wang B (2019b) Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat Chem Biol 15:540–548

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Buck M (2014) Rapid engineering of versatile molecular logic gates using heterologous genetic transcriptional modules. Chem Commun 50:11642–11644

    Article  CAS  Google Scholar 

  • Wang B, Barahona N, Buck M (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron 40:368–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Barahona N, Buck M (2014) Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks. Nucleic Acids Res 42:9484–9492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Barahona N, Buck M (2015) Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities. Nucleic Acids Res 43:1955–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster DP, TerAvest MA, Doud DF et al (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62:320–324

    Article  CAS  PubMed  Google Scholar 

  • Wedekind JE, Dutta D, Belashov IA et al (2017) Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes. J Biol Chem 292:9441–9450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong LS, Lee YH, Surif S (2013) Whole cell biosensor using Anabaena torulosa with optical transduction for environmental toxicity evaluation. J Sens 567272:1. https://doi.org/10.1155/2013/567272

    Article  CAS  Google Scholar 

  • Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Yoon KP, Misra TK, Silver S (1991) Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 173:7643–7649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon Y, Kim S, Chae Y (2016a) Simultaneous detection of bioavailable As and Cd in contamined soils using dual-sensing bioreporters. Appl Microbiol Biotechnol 100:3713–3722

    Article  CAS  PubMed  Google Scholar 

  • Yoon Y, Kim S, Chae Y (2016b) Evaluation of bioavailable Ar and remediation performance using a WCB. Sci Total Environ 547:125–131

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Han H, Liu P et al (2017) Microbial fuels cell-based biosensor for toxicity detection: a review. Sensors 17:2230. https://doi.org/10.3390/s17102230

    Article  CAS  PubMed Central  Google Scholar 

  • Zorawski M, Shaffer J, Velasquez E et al (2016) Creating a riboswitch-based whole-cell biosensor for bisphenol A. FASEB. https://doi.org/10.1096/fasebj.30.1.supplement.805.3

  • Zylstra GJ, McCombie WR, Gibson DT et al (1988) Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54:1498–1503

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Carlos Gutiérrez .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gutiérrez, JC., Amaro, F., Díaz, S., Martín-González, A. (2020). Environmental Biosensors: A Microbiological View. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_191-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_191-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics