Skip to main content

Application of Bacterial Whole-Cell Biosensors in Health

  • Living reference work entry
  • First Online:

Abstract

Biosensors employ biological systems to detect an analyte and report it by transducing a detectable signal. Application of synthetic biology design is able to convert bacteria into whole-cell biosensors (WCB), sensing physical and biochemical signals in the environment. Besides advantages of simple use, rapid response, portability, sensitivity, and low cost, the unique features of WCB lie in their ability to detect toxicity/stress and bioavailability in situ. These make WCB an attractive tool to health-related applications. This review focuses on bacterial whole-cell biosensors (WCB) for cancer diagnosis and treatment, antibiotic discovery and identification, and assessment of health risk.

This is a preview of subscription content, log in via an institution.

References

  • Alon U (2007) An introduction to systems biology: design principles of biological circuits. Chapman Hall/CRC.

    Google Scholar 

  • Alvey RM, Biswas A, Schluchter WM, Bryant DA (2011) Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli. Biochemistry 50:4890–4902

    Google Scholar 

  • Anko ML, Kurittu J, Karp M (2002) An Escherichia coli biosensor strain for amplified and high throughput detection of antimicrobial agents. J Biomol Screen 7:119–125

    Article  Google Scholar 

  • Bermúdez-Humarán LG et al (2013) Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16:278–283

    Google Scholar 

  • Bharadwaj S, Mitchell RJ, Qureshi A, Niazi JH (2017) Toxicity evaluation of e-juice and its soluble aerosols generated by electronic cigarettes using recombinant bioluminescent bacteria responsive to specific cellular damages. Biosens Bioelectron 90:53–60

    Google Scholar 

  • Bhatnagar PK, Awasthi A, Nomellini JF, Smit J, Suresh MR (2006) Anti-tumor effects of the bacterium Caulobacter crescentus in murine tumor models. Cancer Biol Ther 5:485–491

    Article  CAS  Google Scholar 

  • Biran A et al (2011) Microbial genotoxicity bioreporters based on sulA activation. Anal Bioanal Chem 400:3013–3024

    Google Scholar 

  • Bohunicky B, Mousa SA (2011) Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 4:1–10

    Google Scholar 

  • Booth MG, Jeffrey WH, Miller RV (2001) RecA expression in response to solar UVR in the marine bacterium Vibrio natriegens. Microb Ecol 42:531–539

    Google Scholar 

  • Bourdeau RW et al (2018) Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553:86–90

    Google Scholar 

  • Chang J et al (2015) Pseudomonas aeruginosa preparation plus chemotherapy for advanced non-small-cell lung cancer: a randomized, multicenter, double-blind phase III study. Med Oncol 32:139

    Google Scholar 

  • Chen Z et al (2014) Incorporation of therapeutically modified bacteria into Gut microbiota inhibits obesity. J Clin Invest 124:3391–3406

    Article  CAS  Google Scholar 

  • Cortés-Salazar F, Beggah S, van der Meer JR, Girault HH (2013) Electrochemical As(III) whole-cell based biochip sensor. Biosens Bioelectron 47:237–242

    Google Scholar 

  • Cory L, Chu C (2014) ADXS-HPV: a therapeutic Listeria vaccination targeting cervical cancers expressing the HPV E7 antigen. Hum Vaccines Immunother 10:3190–3195

    Google Scholar 

  • Cuello-Garcia, C. A. et al.(2015) Probiotics for the prevention of allergy: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol 136:952–961

    Google Scholar 

  • Danino T et al (2015) Programmable probiotics for detection of cancer in urine. Sci Transl Med 7:289ra84–289ra84

    Article  Google Scholar 

  • De Las Heras A, Carreño CA, Martínez-García E, De Lorenzo V (2010) Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiol Rev 34:842–865

    Google Scholar 

  • Del Vecchio D, Dy AJ, Qian Y (2016) Control theory meets synthetic biology. J R Soc Interface 13:20160380

    Google Scholar 

  • Din MO et al (2016) Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536:81–85

    Article  CAS  Google Scholar 

  • Dong H, Zhang D (2014) Current development in genetic engineering strategies of Bacillus species. Microb Cell Factories 13:63

    Google Scholar 

  • Du Nguyen V et al (2016) Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium). Sensors Actuators B Chem 224:217–224

    Article  CAS  Google Scholar 

  • Duan FF, Liu JH, March JC (2015) Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64:1794–1803

    Article  CAS  Google Scholar 

  • Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10:785–794

    Article  CAS  Google Scholar 

  • Fujiya M, Ueno N, Kohgo Y (2014) Probiotic treatments for induction and maintenance of remission in inflammatory bowel diseases: a meta-analysis of randomized controlled trials. Clin J Gastroenterol 7:1–13

    Article  Google Scholar 

  • Hansen LH, Sorensen SJ (2000) Detection and quantification of tetracyclines by whole cell biosensors. FEMS Microbiol Lett 190:273–278

    Article  CAS  Google Scholar 

  • Hwang IY et al (2017) Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun 8:15028

    Article  CAS  Google Scholar 

  • Igarashi K et al (2018) Tumor-targeting Salmonella typhimurium A1-R is a highly effective general therapeutic for undifferentiated soft tissue sarcoma patient-derived orthotopic xenograft nude-mouse models. Biochem Biophys Res Commun 497:1055–1061

    Google Scholar 

  • Jiang B et al (2015) Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils. Biotechnol Lett 37:343–348

    Google Scholar 

  • Jiang B, Huang WE, Li G (2016) Construction of a bioreporter by heterogeneously expressing a: Vibrio natriegens recA::luxCDABE fusion in Escherichia coli, and genotoxicity assessments of petrochemical-contaminated groundwater in northern China. Environ Sci Process Impacts 18:751–759

    Google Scholar 

  • Kao W-C, Belkin S, Cheng J-Y (2018) Microbial biosensing of ciprofloxacin residues in food by a portable lens-free CCD-based analyzer. Anal Bioanal Chem 410:1257–1263

    Article  CAS  Google Scholar 

  • Kim S, Chae Y, Kang Y, An YJ, Yoon Y (2016) Assessing the toxicity and the dissolution rate of zinc oxide nanoparticles using a dual-color Escherichia coli whole-cell bioreporter. Chemosphere 59:661–668

    Google Scholar 

  • King JMH et al (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781

    Google Scholar 

  • Kocijancic D et al (2016) Therapy of solid tumors using probiotic Symbioflor-2 – restraints and potential. Oncotarget 7:22605–22622

    Google Scholar 

  • Kostrzynska M, Leung KT, Lee H, Trevors JT (2002) Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. J Microbiol Methods 48:43–51

    Google Scholar 

  • Kurittu J, Karp M, Korpela M (2000) Detection of tetracyclines with luminescent bacterial strains. Lumin J Biol Chem Lumin 15:291–297

    Article  CAS  Google Scholar 

  • Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, Kotula JW, Antipov E, Dagon Y, Denney WS, Wagner DA, West KA, Degar AJ, Brennan AM, Miller PF (2019) An engineered Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Science Translational Medicine 11(475):eaau7975

    Google Scholar 

  • Lagenaur LA et al (2011) Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol 4:648–657

    Article  CAS  Google Scholar 

  • Lee CH, Wu CL, Tai YS, Shiau AL (2005) Systemic administration of attenuated Salmonella choleraesuis in combination with cisplatin for cancer therapy. Mol Ther 11:707–716

    Google Scholar 

  • Lee CH, Hsieh JL, Wu CL, Hsu PY, Shiau AL (2011) T cell augments the antitumor activity of tumor-targeting Salmonella. Appl Microbiol Biotechnol 90:1381–1388

    Google Scholar 

  • Lehouritis P, Stanton M, McCarthy FO, Jeavons M, Tangney M (2016) Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J Control Release 222:9–17

    Google Scholar 

  • Lim B, Zimmermann M, Barry NA, Goodman AL (2017) Engineered regulatory systems modulate gene expression of human commensals in the Gut. Cell 169:547–558.e15

    Article  CAS  Google Scholar 

  • Loeffler M, Le’Negrate G, Krajewska M, Reed JC (2007) Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci U S A 104:12879–12883

    Article  CAS  Google Scholar 

  • Maletzki C, Linnebacher M, Kreikemeyer B, Emmrich J (2007) Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model. Gut 57:483–491

    Article  Google Scholar 

  • Malmgren RA, Flanigan CC (1955) Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res 15:473–478

    CAS  PubMed  Google Scholar 

  • Mandell DJ et al (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60

    Google Scholar 

  • Melamed S et al (2012) A bacterial reporter panel for the detection and classification of antibiotic substances. Microb Biotechnol 5:536–548

    Google Scholar 

  • Mengesha A et al (2006) Development of a flexible and potent hypoxia-inducible promoter for tumor-targeted gene expression in attenuated Salmonella. Cancer Biol Ther 5:1120–1128

    Google Scholar 

  • Mimee M, Tucker AC, Voigt CA, Lu TK (2015) Programming a human commensal bacterium, bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst 1:62–71

    Article  CAS  Google Scholar 

  • Mohrle V, Stadler M, Eberz G (2007) Biosensor-guided screening for macrolides. Anal Bioanal Chem 388:1117–1125

    Article  CAS  Google Scholar 

  • Murata T et al (1965) Oncolytic effect of Proteus mirabilis upon tumor bearing animal. Life Sci 4:1055–1067

    Article  CAS  Google Scholar 

  • Ng SP, Palombo EA, Bhave M (2012) Identification of a copper-responsive promoter and development of a copper biosensor in the soil bacterium Achromobacter sp. AO22. World J Microbiol Biotechnol 28:2221–2228

    Google Scholar 

  • Norman A, Hansen LH, Sørensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ Microbiol 71:2338–2346

    Google Scholar 

  • Pan ZK, Weiskirch LM, Paterson Y (1999) Regression of established B16F10 melanoma with a recombinant Listeria monocytogenes vaccine. Cancer Res 59:5264–5269

    CAS  PubMed  Google Scholar 

  • Pikkemaat MG, Rapallini ML, Karp MT, Elferink JW (2010) Application of a luminescent bacterial biosensor for the detection of tetracyclines in routine analysis of poultry muscle samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:1112–1117

    Article  CAS  Google Scholar 

  • Pruden A (2014) Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ Sci Technol 48:5–14

    Google Scholar 

  • Ptitsyn, L. R. et al. (1997) A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl Environ Microbiol. 63:4377–4384

    Google Scholar 

  • Rebets Y, Schmelz S, Gromyko O, Tistechok S, Petzke L, Scrima A, Luzhetskyy A (2018) Design, development and application of whole-cell based antibiotic-specific biosensor. Metab Eng 47:263–270

    Article  CAS  Google Scholar 

  • Ryan RM et al (2009) Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther 16:329–339

    Google Scholar 

  • Safety and Tolerability of SYNB1020-CP-001 – Full text view – ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03179878

  • Seo EJ, Weibel S, Wehkamp J, Oelschlaeger TA (2012) Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins. Int J Med Microbiol 302:276–287

    Article  CAS  Google Scholar 

  • Shapiro E, Baneyx F (2007) Stress-activated bioluminescent Escherichia coli sensors for antimicrobial agents detection. J Biotechnol 132:487–493

    Article  CAS  Google Scholar 

  • Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H (2016) A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 150:702–714

    Google Scholar 

  • Singer AC, Shaw H, Rhodes V, Hart A (2016) Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol 7:1728

    Google Scholar 

  • Skjoedt ML et al (2016) Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat Chem Biol 12:951–958

    Google Scholar 

  • Sochor J et al (2011) Bio-sensing of cadmium(II) ions using Staphylococcus aureus. Sensors 11:10638–10663

    Google Scholar 

  • Song Y et al (2009) Optimization of bacterial whole cell bioreporters for toxicity assay of environmental samples. Environ Sci Technol 43:7931–7938

    Google Scholar 

  • Song W, Pasco N, Gooneratne R, Weld RJ (2012) Comparison of three genetically modified Escherichia coli biosensor strains for amperometric tetracycline measurement. Biosens Bioelectron 35:69–74

    Article  CAS  Google Scholar 

  • Song W, Pasco N, Gooneratne R, Weld RJ (2013) An improved genetically modified Escherichia coli biosensor for amperometric tetracycline measurement. Appl Microbiol Biotechnol 97:9081–9086

    Google Scholar 

  • Song Y et al (2014) A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environ Pollut 195:178–84

    Google Scholar 

  • Steidler L (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science (80–) 289:1352–1355

    Article  CAS  Google Scholar 

  • Stern C et al (2015) Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy. Int J Cancer 137:2019–2028

    Google Scholar 

  • Stocker J et al (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750

    Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    Google Scholar 

  • Toso JF et al (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20:142–152

    Article  Google Scholar 

  • Tu D-G et al (2016) Salmonella inhibits tumor angiogenesis by down-regulation of vascular endothelial growth factor. Oncotarget 7:37513–37523

    PubMed  PubMed Central  Google Scholar 

  • Turner APF, Wilson GS (1989) Biosensors fundamentals and applications. Oxford University Press

    Google Scholar 

  • Ulijasz AT, Grenader A, Weisblum B (1996) A vancomycin-inducible lacZ reporter system in Bacillus subtilis: induction by antibiotics that inhibit cell wall synthesis and by lysozyme. J Bacteriol 178:6305–6309

    Article  CAS  Google Scholar 

  • Urban A et al (2007) Novel whole-cell antibiotic biosensors for compound discovery. Appl Environ Microbiol 73:6436–6443

    Google Scholar 

  • Valtonen SJ, Kurittu JS, Karp MT (2002) A luminescent Escherichia coli biosensor for the high throughput detection of beta-lactams. J Biomol Screen 7:127–134

    Article  CAS  Google Scholar 

  • Van Der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522

    Google Scholar 

  • Van Dessel N, Swofford CA, Forbes NS (2015) Potent and tumor specific: arming bacteria with therapeutic proteins. Ther Deliv 6:385–399

    Google Scholar 

  • Vendrell A et al (2016) An oral Salmonella-based vaccine inhibits liver metastases by promoting tumor-specific T-cell-mediated immunity in celiac and portal lymph nodes: a preclinical study. Front Immunol 7:72

    Google Scholar 

  • Verschaeve L et al (1999) VITOTOX (R) bacterial genotoxicity and toxicity test for the rapid screening of chemicals. Environ Mol Mutagen 33:240–248

    Google Scholar 

  • Wang WK, Lu MF, Kuan YD, Lee CH (2015) The treatment of mouse colorectal cancer by oral delivery tumor-targeting Salmonella. Am J Cancer Res 5:1222–1228

    Google Scholar 

  • Willyard C (2017) Drug-resistant bacteria ranked. Nature 543:15

    Google Scholar 

  • Wolf D, Mascher T (2016) The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: expression systems and whole-cell biosensors. Appl Microbiol Biotechnol 100:4817–4829

    Google Scholar 

  • Yazawa K et al (2001) Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat 66:165–70

    Google Scholar 

  • Yoshida K et al (2008) Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. Appl Environ Microbiol 74:6730–6738

    Google Scholar 

  • Yu YA et al (2004) Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 22:313–320

    Article  CAS  Google Scholar 

  • Yu B et al (2012) Explicit hypoxia targeting with tumor suppression by creating an ‘obligate’ anaerobic Salmonella Typhimurium strain. Sci Rep 2:436

    Google Scholar 

  • Zhang F, Keasling J (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19:323–329

    Google Scholar 

  • Zhang Y et al (2012a) Escherichia coli Nissle 1917 targets and restrains mouse b16 melanoma and 4T1 breast tumors through expression of Azurin protein. Appl Environ Microbiol 78:7603–7610

    Google Scholar 

  • Zhang D et al (2012b) Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microb Biotechnol 5:87–97

    Article  CAS  Google Scholar 

  • Zhang D et al (2013) Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion. Water Res 47:1191–200

    Google Scholar 

  • Zhao M et al (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Urol Oncol: Semin Original Investig 23:380

    Google Scholar 

  • Zheng JH et al (2017) Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med 9:eaak9537

    Article  Google Scholar 

  • Zhu H et al (2011) Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium Infantis on Lewis lung cancer in mice. Cancer Gene Ther 18:884–896

    Article  CAS  Google Scholar 

  • Zoaby N et al (2017) Autonomous bacterial nanoswimmers target cancer. J Control Release 257:68–75

    Google Scholar 

  • Zuccotti G et al (2015) Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy 70:1356–1371

    Google Scholar 

Download references

Acknowledgments

W.E.H. acknowledges support from EPSRC (EP/M002403/1 and EP/N009746/1) in the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei E. Huang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Song, Y., Rampley, C.P.N., Chen, X., Du, F., Thompson, I.P., Huang, W.E. (2019). Application of Bacterial Whole-Cell Biosensors in Health. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_136-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_136-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics