Skip to main content

Optical Approaches to Visualization of Cellular Activity

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors
  • 321 Accesses

Abstract

Cellular activity reveals the responses of the cells to their external stimuli, including chemicals of environmental concern. The changes in cellular activity usually represent the degree of these compounds’ toxicity. Both natural and genetically modified cells may be utilized for reporting on the presence of environmental risks. These cells may intrinsically change their metabolism, gene expression, and protein modifications under stress, resulting in alterations of their physiology and behavior. In this chapter, we review the utilization of optical methods for the visualization of cellular responses. The types of optical changes, including absorbance, fluorescence, and bioluminescence, monitored by common optical detectors, are discussed and compared. For genetically modified cells, the frequently used reporter genes such as lacZ, gfp, lux, and luc generate products that can be detected by optical detectors. The operation principle and performance of common optical detectors including photomultiplier tube (PMT), charge-coupled device (CCD), and complimentary metal-oxide-semiconductor (CMOS) are briefly reviewed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bains W (1994) A spectroscopically interrogated flow-through type toxicity biosensor. Biosens Bioelectron 9(2):111–117

    Article  CAS  PubMed  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212

    Article  CAS  PubMed  Google Scholar 

  • Bereza-Malcolm LT, Mann G, Franks AE (2015) Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth Biol 4(5):535–546

    Article  CAS  PubMed  Google Scholar 

  • Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20(1):83–87

    Article  CAS  PubMed  Google Scholar 

  • Bigas M et al (2006) Review of CMOS image sensors. Microelectron J 37(5):433–451

    Article  Google Scholar 

  • Biran I et al (1999) On-line monitoring of gene expression. Microbiology 145(Pt 8):2129–2133

    Article  CAS  PubMed  Google Scholar 

  • Bohrn U et al (2012) Monitoring of irritant gas using a whole-cell-based sensor system. Sens Actuators B 175:208–217

    Article  CAS  Google Scholar 

  • Brandl MT, Quinones B, Lindow SE (2001) Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci U S A 98(6):3454–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell RE et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99(12):7877–7882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha HJ et al (1999) Green fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells. Appl Environ Microbiol 65(2):409–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu NH, Christopoulos TK (1999) Two-site expression immunoassay using a firefly luciferase-coding DNA label. Clin Chem 45(11):1954–1959

    CAS  PubMed  Google Scholar 

  • Close DM, Ripp S, Sayler GS (2009) Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors (Basel) 9(11):9147–9174

    Article  CAS  Google Scholar 

  • Cortes-Salazar F et al (2013) Electrochemical As(III) whole-cell based biochip sensor. Biosens Bioelectron 47:237–242

    Article  CAS  PubMed  Google Scholar 

  • Daunert S et al (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7):2705–2738

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Cruz MS, de Alda MJL, Barcelo D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal Chem 22(6):340–351

    Article  CAS  Google Scholar 

  • El-Alawi YS et al (2002) Measurement of short- and long-term toxicity of polycyclic aromatic hydrocarbons using luminescent bacteria. Ecotoxicol Environ Saf 51(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Fernandez A et al (1995) Assessment of toxicity of river water and effluents by the bioluminescence assay using Photobacterium-phosphoreum. Water Res 29(5):1281–1286

    Article  CAS  Google Scholar 

  • Gary RK, Kindell SM (2005) Quantitative assay of senescence-associated beta-galactosidase activity in mammalian cell extracts. Anal Biochem 343(2):329–334

    Article  CAS  PubMed  Google Scholar 

  • Gaudin V (2017) Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – a comprehensive review. Biosens Bioelectron 90:363–377

    Article  CAS  PubMed  Google Scholar 

  • Girotti S et al (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608(1):2–29

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ, Subramani S (1988) Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175(1):5–13

    Article  CAS  PubMed  Google Scholar 

  • Greer LF, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17(1):43–74

    Article  CAS  PubMed  Google Scholar 

  • Guidash M et al (2016) Reduction of CMOS image sensor read noise to enable photon counting. Sensors 16(4):517

    Article  Google Scholar 

  • Gustavs L et al (2010) Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. Protoplasma 243(1–4):3–14

    Article  CAS  PubMed  Google Scholar 

  • Hansen LH et al (2001) Detection of oxytetracycline production by Streptomyces rimosus in soil microcosms by combining whole-cell biosensors and flow cytometry. Appl Environ Microbiol 67(1):239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay AG et al (2000) A bioluminescent whole-cell reporter for detection of 2, 4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil. Appl Environ Microbiol 66(10):4589–4594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91(26):12501–12504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373(6516):663–664

    Article  CAS  PubMed  Google Scholar 

  • Hein R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6(2):178–182

    Article  Google Scholar 

  • Heitzer A et al (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 60(5):1487–1494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hug TS, Prenosil JE, Morbidelli M (2001) Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state. Biosens Bioelectron 16(9–12):865–874

    Article  CAS  PubMed  Google Scholar 

  • Jain VK, Magrath IT (1991) A chemiluminescent assay for quantitation of beta-galactosidase in the femtogram range: application to quantitation of beta-galactosidase in lacZ-transfected cells. Anal Biochem 199(1):119–124

    Article  CAS  PubMed  Google Scholar 

  • Jia K, Ionescu RE (2016) Measurement of bacterial bioluminescence intensity and spectrum: current physical techniques and principles. Adv Biochem Eng Biotechnol 154:19–45

    CAS  PubMed  Google Scholar 

  • Jouanneau S et al (2011) Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ Sci Technol 45(7):2925–2931

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau S, Durand MJ, Thouand G (2012) Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. Environ Sci Technol 46(21):11979–11987

    Article  CAS  PubMed  Google Scholar 

  • Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146. (Pt 10:2435–2445

    Article  CAS  PubMed  Google Scholar 

  • Kim H et al (2017) Smartphone-based low light detection for bioluminescence application. Sci Rep 7:40203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King JM et al (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249(4970):778–781

    Article  CAS  PubMed  Google Scholar 

  • Kremers GJ et al (2011) Fluorescent proteins at a glance. J Cell Sci 124(Pt 2):157–160

    Article  CAS  PubMed  Google Scholar 

  • Lagarde F, Jaffrezic-Renault N (2011) Cell-based electrochemical biosensors for water quality assessment. Anal Bioanal Chem 400(4):947–964

    Article  CAS  PubMed  Google Scholar 

  • Leveau JH, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98(6):3446–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YF et al (2008) Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environ Pollut 152(1):123–129

    Article  CAS  PubMed  Google Scholar 

  • Liao VH et al (2006) Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environ Pollut 142(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Lin YK, Yeh YC (2017) Dual-signal microbial biosensor for the detection of dopamine without inference from other catecholamine neurotransmitters. Anal Chem 89(21):11178–11182

    Article  CAS  PubMed  Google Scholar 

  • Long F, Zhu A, Shi H (2013) Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Basel) 13(10):13928–13948

    Article  CAS  Google Scholar 

  • Manen D et al (1997) A sensitive reporter gene system using bacterial luciferase based on a series of plasmid cloning vectors compatible with derivatives of pBR322. Gene 186(2):197–200

    Article  CAS  PubMed  Google Scholar 

  • Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 20(8):1113–1126

    Article  CAS  PubMed  Google Scholar 

  • Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55(1):123–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merzlyak EM et al (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4(7):555–557

    Article  CAS  PubMed  Google Scholar 

  • Miller WG et al (2001) Biological sensor for sucrose availability: relative sensitivities of various reporter genes. Appl Environ Microbiol 67(3):1308–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ormo M et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280):1392–1395

    Article  CAS  PubMed  Google Scholar 

  • Patterson GH et al (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73(5):2782–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovic M et al (2005) Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. J Chromatogr A 1067(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  • Petti L et al (2016) Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev 3(2):021303

    Article  CAS  Google Scholar 

  • Polyak B et al (2001) Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization. Sensors Actuators B Chem 74:9

    Article  Google Scholar 

  • Renker D (2007) New trends on photodetectors. Nucl Instrum Methods Phys Res Sect A 571(1):1–6

    Article  CAS  Google Scholar 

  • Roberto FF, Barnes JM, Bruhn DF (2002) Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 58(1):181–188

    Article  CAS  PubMed  Google Scholar 

  • Rocchitta G et al (2016) Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors (Basel) 16(6):780

    Article  CAS  Google Scholar 

  • Rodriguez EA et al (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42(2):111–129

    Article  CAS  PubMed  Google Scholar 

  • Roggo C, van der Meer JR (2017) Miniaturized and integrated whole cell living bacterial sensors in field applicable autonomous devices. Curr Opin Biotechnol 45:24–33

    Article  CAS  PubMed  Google Scholar 

  • Seliger HH, Mc EW (1960) Spectral emission and quantum yield of firefly bioluminescence. Arch Biochem Biophys 88:136–141

    Article  CAS  PubMed  Google Scholar 

  • Serat WF, Budinger FE, Mueller PK Jr (1967) Toxicity evaluation of air pollutants by use of luminescent bacteria. Atmos Environ 1(1):12

    Article  Google Scholar 

  • Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217(Pt 1):1–15

    CAS  PubMed  Google Scholar 

  • Sticher P et al (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63(10):4053–4060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68(4):1962–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker J et al (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37(20):4743–4750

    Article  CAS  PubMed  Google Scholar 

  • Su L et al (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799

    Article  CAS  PubMed  Google Scholar 

  • Thevenot DR et al (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Truffer F et al (2014) Compact portable biosensor for arsenic detection in aqueous samples with Escherichia coli bioreporter cells. Rev Sci Instrum 85(1):015120

    Article  CAS  PubMed  Google Scholar 

  • Tsai HF et al (2015) Water pollutant monitoring by a whole cell array through lens-free detection on CCD. Lab Chip 15(6):1472–1480

    Article  CAS  PubMed  Google Scholar 

  • Tuerk J et al (2006) Analysis of antibiotics in urine and wipe samples from environmental and biological monitoring – comparison of HPLC with UV-, single MS- and tandem MS-detection. J Chromatogr B Analyt Technol Biomed Life Sci 831(1–2):72–80

    Article  CAS  PubMed  Google Scholar 

  • van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8(7):511–522

    Article  CAS  PubMed  Google Scholar 

  • van Teeseling MCF, de Pedro MA, Cava F (2017) Determinants of bacterial morphology: from fundamentals to possibilities for antimicrobial targeting. Front Microbiol 8:1264

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward WW, Bokman SH (1982) Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 21(19):4535–4540

    Article  CAS  PubMed  Google Scholar 

  • Watstein DM, Styczynski MP (2018) Development of a pigment-based whole-cell zinc biosensor for human serum. ACS Synth Biol 7(1):267–275

    Article  CAS  PubMed  Google Scholar 

  • Wiedenmann J et al (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci U S A 99(18):11646–11651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf D, Mascher T (2016) The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: expression systems and whole-cell biosensors. Appl Microbiol Biotechnol 100(11):4817–4829

    Article  CAS  PubMed  Google Scholar 

  • Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73(6):1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Yagur-Kroll S, Belkin S (2014) Molecular manipulations for enhancing luminescent bioreporters performance in the detection of toxic chemicals. Adv Biochem Eng Biotechnol 145:137–149

    CAS  PubMed  Google Scholar 

  • Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14(10):1246–1251

    Article  CAS  PubMed  Google Scholar 

  • Zhang C et al (2018) A novel whole-cell biosensor of Pseudomonas aeruginosa to monitor the expression of quorum sensing genes. Appl Microbiol Biotechnol 102(14):6023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Yen Cheng .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lu, MY., Cheng, JY. (2019). Optical Approaches to Visualization of Cellular Activity. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_127-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_127-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics