Skip to main content

Influence of Aggregating Window Size on Disparity Maps Obtained from Equal Baseline Multiple Camera Set (EBMCS)

  • Conference paper
  • First Online:
Image Processing and Communications Challenges 8 (IP&C 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 525))

Included in the following conference series:

Abstract

This paper is concerned with obtaining disparity maps on the basis of images from Equal Baseline Multiple Camera Set (EBMCS). EBMCS consists of a central camera and side cameras. Algorithms for obtaining disparity maps with the use of EBMCS take advantage of aggregating windows similarly to stereo matching algorithms for a stereo camera, a camera matrix or a camera array. The paper analyzes the influence of aggregating window size on the quality of disparity maps. Experiments presented in this paper include Sum of Sum of Squared Differences (SSSD) and Sum of Sum of Absolute Differences (SSAD) matching cost functions. Results show that for EBMCS with five cameras the highest quality of disparity maps is obtained when the size of the aggregating window is on average over 55 % smaller than the size of the most effective window for a pair of cameras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, M., Yin, Q., Nayar, S.K.: Structured light in sunlight. In: 2013 IEEE International Conference on Computer Vision, pp. 545–552 (2013)

    Google Scholar 

  2. Ha, H., Oh, T.H., Kweon, I.S.: A multi-view structured-light system for highly accurate 3D modeling. In: International Conference on 3D Vision (3DV), pp. 118–126 (2015)

    Google Scholar 

  3. Hensler, J., Denker, K., Franz, M., Umlauf, G.: Hybrid face recognition based on real-time multi-camera stereo-matching. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011. LNCS, vol. 6939, pp. 158–167. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24031-7_16

    Chapter  Google Scholar 

  4. Kaczmarek, A.L.: Improving depth maps of plants by using a set of five cameras. J. Electron. Imaging 24(2), 023018:1–023018:11 (2015)

    Article  Google Scholar 

  5. Kaczmarek, A.L.: Widzenie komputerowe oparte na mnogości widoków. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej 36, 85–88 (2013)

    Google Scholar 

  6. Kazmi, W., Foix, S., Alenya, G.: Plant leaf imaging using time of flight camera under sunlight, shadow and room conditions. In: IEEE International Symposium on Robotic and Sensors Environments (ROSE), pp. 192–197 (2012)

    Google Scholar 

  7. Matusik, W., Pfister, H.: 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. In: ACM SIGGRAPH, pp. 814–824 (2004)

    Google Scholar 

  8. Nalpantidis, L., Chrysostomou, D., Gasteratos, A.: Obtaining reliable depth maps for robotic applications from a quad-camera system. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (eds.) ICIRA 2009. LNCS (LNAI), vol. 5928, pp. 906–916. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10817-4_89

    Chapter  Google Scholar 

  9. Okutomi, M., Kanade, T.: A multiple-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993)

    Article  Google Scholar 

  10. Park, J.I., Inoue, S.: Acquisition of sharp depth map from multiple cameras. Sig. Process. Image Commun. 14(1–2), 7–19 (1998)

    Article  Google Scholar 

  11. Pei, Z., Zhang, Y., Yang, T., Zhang, X., Yang, Y.H.: A novel multi-object detection method in complex scene using synthetic aperture imaging. Pattern Recogn. 45(4), 1637–1658 (2012)

    Article  Google Scholar 

  12. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1), 7–42 (2002)

    Article  MATH  Google Scholar 

  13. Tse, R.O., Gold, C., Kidner, D.: 3D city modelling from LIDAR data. In: van Oosterom, V., Zlatanova, S., Penninga, F., Fendel, E.M. (eds.) Advances in 3D Geoinformation Systems. Lecture Notes in Geoinformation and Cartography, pp. 161–175. Springer, Berlin (2008)

    Chapter  Google Scholar 

  14. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays. In: ACM SIGGRAPH, pp. 765–776 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Kaczmarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kaczmarek, A.L. (2017). Influence of Aggregating Window Size on Disparity Maps Obtained from Equal Baseline Multiple Camera Set (EBMCS). In: Choraś, R. (eds) Image Processing and Communications Challenges 8. IP&C 2016. Advances in Intelligent Systems and Computing, vol 525. Springer, Cham. https://doi.org/10.1007/978-3-319-47274-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47274-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47273-7

  • Online ISBN: 978-3-319-47274-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics