Skip to main content

QRS Complex Detection Based on Ensemble Empirical Mode Decomposition

  • Conference paper
  • First Online:
Innovations in Biomedical Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 526))

Abstract

The principal objective of this project was to investigate the detection of QRS complexes in noisy ECG signals. This study provides a novel approach to the construction of a QRS detector based on the Ensemble Empirical Mode Decomposition. The detection function is based on predicted probability that the current signal sample is a QRS fiducial point. The performances of the proposed method were verified on the MIT-BIH Arrhythmia Database. Results showed that this approach improves the QRS detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, S., Gupta, A.: Fractal and EMD based removal of baseline wander and powerline interference from ECG signals. Comput. Biol. Med. 43, 1889–1899 (2013)

    Article  MathSciNet  Google Scholar 

  2. Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Barger, A.C., Cohen, R.J.: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science 213, 220–222 (1981)

    Article  Google Scholar 

  3. Blanco-Velasco, M., Weng, B., Barner, K.E.: ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38, 1–13 (2008)

    Article  Google Scholar 

  4. Buehlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting. Stat. Sci. 22(4), 477–505 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chourasia, V.S., Tiwari, A.K.: A review and comparative analysis of recent advancements in fetal monitoring techniques. Crit. Rev. Biomed. Eng. 36(5–6), 335–373 (2008)

    Google Scholar 

  6. Chu, C.H.H., Delp, E.J.: Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators. IEEE Trans. Biomed. Eng. 36(2), 262–273 (1989)

    Article  Google Scholar 

  7. Fasano, A., Villani, V.: Baseline wander removal for bioelectrical signals by quadratic variation reduction. Signal Process. 99, 48–57 (2014)

    Article  Google Scholar 

  8. Friesen, G.M., Jannett, T.C., Jadallah, M.A., Yates, S.L., Quint, S.R.: A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37, 85–98 (1990)

    Article  Google Scholar 

  9. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  10. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode composition and the Hilbert spectrum for nonlinear and non stationary time series analysis. Proc. Roy. Soc. 454, 903–905 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jezewski, J., Matonia, A., Kupka, T., Roj, D., Czabanski, R.: Determination of the fetal heart rate from abdominal signals: evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed. Eng. 57(5), 383–394 (2012)

    Article  Google Scholar 

  12. Kohler, B.U., Hennig, C., Orglmeister, R.: The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)

    Article  Google Scholar 

  13. Kotas, M., Jezewski, J., Matonia, A., Kupka, T.: Towards noise immune detection of fetal QRS complexes. Comput. Meth. Prog. Bio. 97(3), 241–256 (2010)

    Article  Google Scholar 

  14. Kotas, M., Jezewski, J., Horoba, K., Matonia, A.: Application of spatio-temporal filtering to fetal electrocardiogram enhancement. Comput. Meth. Prog. Bio. 104(1), 1–9 (2011)

    Article  Google Scholar 

  15. Kupka, T., Jezewski, J., Matonia, A., Horoba, K., Wrobel, J.: Timing events in Doppler ultrasound signal of fetal heart activity. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 337–340 (2004)

    Google Scholar 

  16. Leski, J.M., Henzel, N.: Time series of fuzzy sets in classification of electrocardiographic signals. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013, Advances in Intelligent Systems and Computing, pp. 541–550 (2013)

    Google Scholar 

  17. Łęski, J.M., Henzel, N.: ECG baseline wander and powerline interference reduction using nonlinear filter bank. Signal Process. 85(4), 781–793 (2005)

    Article  MATH  Google Scholar 

  18. Matonia, A., Jezewski, J., Kupka, T., Horoba, K., Wrobel, J., Gacek, A.: The influence of coincidence of fetal and maternal QRS complexes on fetal heart rate reliability. Med. Biol. Eng. Comput. 44, 393–403 (2006)

    Article  Google Scholar 

  19. McManus, C.D., Neubert, D., Cramer, E.: Characterization and elimination of AC noise in the electrocardiogram: a comparison of digital filtering methods. Comput. Biomed. Res. 26, 48–67 (1993)

    Article  Google Scholar 

  20. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH Arrhythmia Database. IEEE Eng. in Med. and Biol. 20(3), 45–50 (2001)

    Article  Google Scholar 

  21. Nimunkar, A.J., Tompkins, W.J.: EMD-based 60-Hz noise filtering of the ECG. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 1904–1907 (2007)

    Google Scholar 

  22. Nimunkar, A.J., Tompkins, W.J.: R-peak detection and signal averaging for simulated stress ECG using EMD. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 1261–1264 (2007)

    Google Scholar 

  23. Pal, S., Mitra, M.: Empirical mode decomposition based ECG enhancement and QRS detection. Comput. Biol. Med. 42, 83–92 (2012)

    Article  Google Scholar 

  24. Pahlm, O., Sornmo, L.: Software QRS detection in ambulatory monitoring – a review. Med. Biol. Eng. Comput. 22, 298–297 (1984)

    Article  Google Scholar 

  25. Suchetha, M., Kumaravel, N., Benisha, B.: Denoising and arrhythmia classification using EMD based features and neural network. In: 2013 International Conference on Communications and Signal Processing (ICCSP), pp. 883–887 (2013)

    Google Scholar 

  26. Thakor, N.V., Zhu, Y.S.: Application of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38(8), 785–794 (1991)

    Article  Google Scholar 

  27. Ungureanu, G.M., Bergmans, J.W., Oei, S.G., Ungureanu, A., Wolf, W.: Comparison and evaluation of existing methods for the extraction of low amplitude electrocardiographic signals: a possible approach to transabdominal fetal ECG. Biomed. Tech. 54(2), 66–75 (2009)

    Article  Google Scholar 

  28. van Alste, A., van Eck, W., Herrman, O.E.: ECG baseline wander reduction using linear phase filters. Comput. Biomed. Res. 19, 417–427 (1986)

    Article  Google Scholar 

  29. Velasco, M.B., Weng, B., Barner, K.E.: ECG signal denoising and baselinewander correction based on the empirical mode decomposition. Comput. Bio. Med. 38, 1–13 (2008)

    Article  Google Scholar 

  30. Vullings, R., Peters, C.H., Hermans, M.J., Wijn, P.F., Oei, S.G., Bergmans, J.W.: A robust physiology-based source separation method for QRS detection in low amplitude fetal ECG recordings. Physiol. Meas. 31, 935–951 (2010)

    Article  Google Scholar 

  31. Wrobel, J., Horoba, K., Pander, T., Jezewski, J., Czabanski, R.: Improving the fetal heart rate signal interpretation by application of myriad filtering. Biocybern. Biomed. Eng. 33, 211–221 (2013)

    Article  Google Scholar 

  32. Wrobel, J., Matonia, A., Horoba, K., Jezewski, J., Czabanski, R., Pawlak, A., et al.: Pregnancy telemonitoring with smart control of algorithms for signal analysis. J. Med. Imag. Health. In. 5(6), 1302–1310 (2015)

    Google Scholar 

  33. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)

    Article  Google Scholar 

  34. Zhao, Z., Chen, Y.: A new method for removal of baseline wander and power line interference in ECG signals. In: Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, pp. 4342–4347 (2006)

    Google Scholar 

Download references

Acknowledgements

This scientific research work is supported by The National Centre for Research and Development of Poland (grant No. STRATEGMED2/269343/NCBR/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Henzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Henzel, N. (2017). QRS Complex Detection Based on Ensemble Empirical Mode Decomposition. In: Gzik, M., Tkacz, E., Paszenda, Z., Piętka, E. (eds) Innovations in Biomedical Engineering. Advances in Intelligent Systems and Computing, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-319-47154-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47154-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47153-2

  • Online ISBN: 978-3-319-47154-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics