Skip to main content

Logic-Based Multi-objective Design of Chemical Reaction Networks

  • Conference paper
  • First Online:
Hybrid Systems Biology (HSB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9957))

Included in the following conference series:

Abstract

The design of genetic or protein networks that satisfy a given set of behavioural specifications is one of the main challenges of synthetic biology. Model-based design is a natural choice in this respect. Here we consider the problem of tuning parameters of a stochastic model to force one or more behavioural goals to hold. In particular, we consider several objectives specified by signal temporal logic formulae, and we look for a parameter set making their satisfaction probability as large as possible. This formalisation results in a multi-objective optimisation problem, which we solve by considering an optimisation scheme combining satisfaction probability and average robustness of STL properties, leveraging state of the art multi-objective optimisation routines.

LB acknowledges partial support from EU-FET project QUANTICOL (nr. 600708) and from FRA-UniTS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rate coefficients are as follows: \(k_{si}=0.5\), \(k_{ir}=0.05\), \(k_{is}=0.1\), \(k_{rs}=0.05\), \(k_{v}\in [0.08,10]\). The vaccination rate is the only free parameter that is optimised.

References

  1. Baier, C.: On algorithmic verification methods for probabilistic systems. Universität Mannheim (1998)

    Google Scholar 

  2. Balázsi, G., van Oudenaarden, A., Collins, J.J.: Cellular decision making, biological noise: from microbes to mammals. Cell 144(6), 910–925 (2011)

    Article  Google Scholar 

  3. Ballarini, P., Guerriero, M.L.: Query-based verification of qualitative trends and oscillations in biochemical systems. Theor. Comput. Sci. 411(20), 2019–2036 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billingsley, P.: Convergence of Probability Measures. Wiley, NewYork (1999)

    Book  MATH  Google Scholar 

  6. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

    Article  Google Scholar 

  7. Bortolussi, L., Milios, D., Sanguinetti, G.: U-check: model checking and parameter synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 89–104. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  8. Brauer, F.: Compartmental models in epidemiology. In: Mathematical epidemiology, pp. 19–79. Springer (2008)

    Google Scholar 

  9. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006). doi:10.1007/11672142_26

    Chapter  Google Scholar 

  10. Coello, C.A.C., Lamont, G.B.: Applications of multi-objective evolutionary algorithms, vol. 1. World Scientific (2004)

    Google Scholar 

  11. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, New York (2001)

    MATH  Google Scholar 

  12. Deb, K.: Multi-objective optimization. In: Search Methodologies, pp. 403–449. Springer (2014)

    Google Scholar 

  13. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  14. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 50–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 317–332. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in escherichia coli. Nature 403(6767), 339–342 (2000)

    Google Scholar 

  18. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  19. Henzinger, T.A., Jobstmann, B., Wolf, V.: Formalisms for specifying Markovian population models. In: Bournez, O., Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 3–23. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Norris, J.R.: Markov chains, Number 2008. Cambridge University Press (1998)

    Google Scholar 

  22. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  23. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS 99(20), 12795–12800 (2002)

    Article  Google Scholar 

  24. Zhou, A., Bo-Yang, Q., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

  25. Zuluaga, M., Sergent, G., Krause, A., Püschel, M.: Active learning for multi-objective optimization. ICML 1(28), 462–470 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Silvetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bortolussi, L., Policriti, A., Silvetti, S. (2016). Logic-Based Multi-objective Design of Chemical Reaction Networks. In: Cinquemani, E., Donzé, A. (eds) Hybrid Systems Biology. HSB 2016. Lecture Notes in Computer Science(), vol 9957. Springer, Cham. https://doi.org/10.1007/978-3-319-47151-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47151-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47150-1

  • Online ISBN: 978-3-319-47151-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics