Skip to main content

Novel Immunotherapies and Novel Combinations of Immunotherapy

  • Living reference work entry
  • First Online:
Cutaneous Melanoma

Abstract

The introduction of immune checkpoint therapy has dramatically changed the treatment of metastatic melanoma. The characterization of immune checkpoints and the processes that mediate immune recognition of melanoma, as well as the ways in which melanoma escapes immune detection, have opened new areas of investigation in developmental therapeutics within the melanoma field. A central paradigm for drug development is the T-cell-inflamed versus non-inflamed tumor microenvironment. This model characterizes therapies to overcome local mechanisms of immunosuppression to already recognized tumors versus therapies targeting the escape mechanisms that deny the initial infiltration of T cells into a tumor. Multiple strategies have been developed to address mechanisms of resistance in T-cell-inflamed versus non-T-cell-inflamed tumors. These include novel checkpoints and vaccines, novel antibody therapies, adoptive T-cell therapies, and direct intra-tumoral therapies. This chapter provides an overview of this paradigm in developmental therapies, as well as the multiple agents in development to overcome the multiple mechanisms of resistance in melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amos SM et al (2011) Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice. Cancer Immunol Immunother 60(5):671–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andtbacka RHI et al (2015) Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol 33(25):2780–2788

    Article  CAS  Google Scholar 

  • Ascierto PA et al (2017) Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy. J Clin Oncol 35:9520

    Article  Google Scholar 

  • Atkins MB et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17(7):2105–2105

    Article  CAS  PubMed  Google Scholar 

  • Ayers M et al (2017) IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940

    Article  PubMed  PubMed Central  Google Scholar 

  • Bifulco CB, Urba WJ (2016) Unmasking PD-1 resistance by next-generation sequencing. N Engl J Med 375(9):888–889

    Article  PubMed  Google Scholar 

  • Brochez L, Chevolet I, Kruse V (2017) The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur J Cancer 76:167–182

    Article  CAS  PubMed  Google Scholar 

  • Bu X, Mahoney KM, Freeman GJ (2016) Learning from PD-1 resistance: new combination strategies. Trends Mol Med 22(6):448–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnette BC et al (2011) The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 71(7):2488–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charych DH et al (2016) NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res 22(3):680–690

    Article  CAS  PubMed  Google Scholar 

  • Chester C et al (2017a) Biomarker characterization using mass cytometry in a phase 1 trial of urelumab (BMS-663513) in subjects with advanced solid tumors and relapsed/refractory B-cell non-Hodgkin lymphoma. J Clin Oncol 32:3017

    Article  Google Scholar 

  • Chester, C., et al., 2017b. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood, 131(1):57. https://doi.org/10.1182/blood-2017-06-741041

  • Chicoine MR et al (2001) Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme. Neurosurgery 48:607–614. academic.oup.com

    Article  CAS  PubMed  Google Scholar 

  • Corrales L et al (2016) The host STING pathway at the interface of cancer and immunity. J Clin Invest 126(7):2404–2411

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahlén E, Veitonmäki N, Norlén P (2018) Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother 6(1):3–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Daud A et al (2018) Epacadostat plus nivolumab for advanced melanoma: updated phase 2 results of the ECHO-204 study. J Clin Oncol 36:9511

    Article  Google Scholar 

  • Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  CAS  PubMed  Google Scholar 

  • Deng L et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diab A et al (2018) A phase 2 study to evaluate the safety and efficacy of Intratumoral (IT) injection of the TLR9 agonist IMO-2125 (IMO) in combination with ipilimumab (ipi) in PD-1 inhibitor refractory melanoma. J Clin Oncol 36:9515

    Article  Google Scholar 

  • Downey CM et al (2014) DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung Cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2′3′-cGAMP, induces M2 macrophage repolarization C. Kanthou, ed. PLoS One 9(6):e99988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dreno B et al (2018) MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 19(7):916–929

    Article  CAS  PubMed  Google Scholar 

  • Fesnak AD, June CH, Levine BL (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 16(9):566–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin C et al (2017) Immunotherapy in melanoma: recent advances and future directions. Eur J Surg Oncol 43(3):604–611

    Article  CAS  PubMed  Google Scholar 

  • Freeman GJ et al (2010) TIMgenes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 235(1):172–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao P et al (2013) Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154(4):748–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosso JF et al (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117(11):3383–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubin MM, Schreiber RD (2015) The odds of immunotherapy success. Science 350(6257):158–159

    Article  CAS  PubMed  Google Scholar 

  • Hamid O et al (2017) 1214OEpacadostat plus pembrolizumab in patients with advanced melanoma: phase 1 and 2 efficacy and safety results from ECHO-202/KEYNOTE-037. Ann Oncol 28(suppl_5):428–448

    Google Scholar 

  • Harlin H et al (2009) Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69(7):3077–3085

    Article  CAS  PubMed  Google Scholar 

  • Heaton KM, Grimm EA (1995) Differential inhibition of lymphokine-activated killing, proliferation, and cytokine secretion by humanized antibodies against the low- and intermediate-affinity interleukin-2 receptors: a novel model for activation of human peripheral blood mononuclear cells by interleukin 2. Hum Immunol 42(3):274–280

    Article  CAS  PubMed  Google Scholar 

  • Hersey P, Gallagher S (2014) Intralesional immunotherapy for melanoma J. F. Thompson, ed. J Surg Oncol 109(4):320–326

    Article  CAS  PubMed  Google Scholar 

  • Hodi FS et al (2010) Improved survival with Ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann MA et al (2008) Phase 1 evaluation of Intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother 31(5):520–527

    Article  CAS  PubMed  Google Scholar 

  • Ji R-R et al (2011) An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61(7):1019–1031

    Article  PubMed  CAS  Google Scholar 

  • Johnston RJ et al (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 26(6):923–937

    Article  CAS  PubMed  Google Scholar 

  • Kaufman HL et al (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17(3):718–730

    Article  PubMed  Google Scholar 

  • Kidner TB et al (2012) Combined intralesional Bacille Calmette-Guérin (BCG) and topical Imiquimod for in-transit melanoma. J Immunother 35(9):716–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim PS et al (2016) IL-15 superagonist/IL-15RαSushi-fc fusion complex (IL-15SA/IL-15RαSu-fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget 7(13):16130–16145

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H et al (2000) Differences of biodistribution, pharmacokinetics, and tumor targeting between interleukins 2 and 15. Cancer Res 60(13):3577–3583

    CAS  PubMed  Google Scholar 

  • Lehmann S et al (2016) In vivo fluorescence imaging of the activity of CEA TCB, a novel T-cell bispecific antibody, reveals highly specific tumor targeting and fast induction of T-cell–mediated tumor killing. Clin Cancer Res 22(17):4417–4427

    Article  CAS  PubMed  Google Scholar 

  • Levy O et al (2015) Computational discovery and experimental validation of novel drug targets in immuno-oncology. J Immunother Cancer 3(Suppl 2):P184

    Google Scholar 

  • Long GV et al (2017) Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage IIIB-IV melanoma. J Clin Oncol 34:9568

    Article  Google Scholar 

  • Long GV et al (2018) Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study. J Clin Oncol 36:108

    Article  Google Scholar 

  • Lozano E et al (2012) The TIGIT/CD226 Axis regulates human T cell function. J Immunol 188(8):1103627–1103875

    Article  CAS  Google Scholar 

  • Lu Y-C et al (2017) Treatment of patients with metastatic cancer using a major histocompatibility complex class II–restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J Clin Oncol 35(29):3322–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luke JJ, Schwartz GK (2013) Chemotherapy in the management of advanced cutaneous malignant melanoma. Clin Dermatol 31(3):290–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Luke JJ et al (2017) Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 14(8):463–482

    Article  CAS  PubMed  Google Scholar 

  • Luke JJ et al (2018) Safety and clinical activity of Pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors. J Clin Oncol 36(16):1611–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandalà M et al (2017) Rationale for new checkpoint inhibitor combinations in melanoma therapy. Am J Clin Dermatol 18(5):597–611

    Article  PubMed  Google Scholar 

  • Maude SL et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan RA et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi H et al (2006) Rose Bengal induces dual modes of cell death in melanoma cells and has clinical activity against melanoma. Melanoma Res 16:S8

    Article  Google Scholar 

  • Mumm JB et al (2011) IL-10 Elicits IFNγ-dependent tumor immune surveillance. Cancer Cell 20(6):781–796

    Article  CAS  PubMed  Google Scholar 

  • Naing A et al (2016) Safety, antitumor activity, and immune activation of PEGylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J Clin Oncol 34(29):3562–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott PA et al (2014) Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol 32(32):3659–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott PA et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pashenkov M et al (2006) Phase II trial of a toll-like receptor 9–activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol 24:5716–5724

    Article  CAS  PubMed  Google Scholar 

  • Peng W et al (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6(2):202–216

    Article  CAS  PubMed  Google Scholar 

  • Petrasek J et al (2013) STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc Natl Acad Sci 110(41):201308331–201316549

    Article  Google Scholar 

  • Pol J, Kroemer G, Galluzzi L (2015) First oncolytic virus approved for melanoma immunotherapy. OncoImmunology 5(1):e1115641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribas A et al (2017) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6):1109–1119.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas A et al (2018) Abstract CT139: durability of responses to the combination of SD-101 and pembrolizumab in advanced metastatic melanoma: results of a phase Ib, multicenter study. Cancer Res 78(13 Supplement):CT139–CT139

    Google Scholar 

  • Robert C et al (2017) Long-term outcomes in patients (pts) with ipilimumab (ipi)-naive advanced melanoma in the phase 3 KEYNOTE-006 study who completed pembrolizumab (pembro) treatment. J Clin Oncol 35:15_suppl, 9504–9504

    Article  Google Scholar 

  • Rosenberg SA et al (1988) Use of tumor-infiltrating lymphocytes and Interleukin-2 in the immunotherapy of patients with metastatic melanoma. N Engl J Med 319(25):1676–1680

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T cell transfer immunotherapy. Clin Cancer Res 17(13):clincanres.0116.2011–clincanres.0116.4557

    Article  Google Scholar 

  • Royal RE et al (2017) A toll-like receptor agonist to drive melanoma regression as a vaccination adjuvant or by direct tumor application. J Clin Oncol 35(15_suppl):9582–9582

    Article  Google Scholar 

  • Sahin U et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226

    Article  CAS  PubMed  Google Scholar 

  • Sakuishi K et al (2011) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 208(6):1331–1331

    Article  CAS  PubMed Central  Google Scholar 

  • Sato T et al (2018) Redirected T cell lysis in patients with metastatic uveal melanoma with gp100-directed TCR IMCgp100: overall survival findings. J Clin Oncol 36(15_suppl):9521–9521

    Article  Google Scholar 

  • Scutti JAB et al (2018) Abstract 614: resiquimod, a toll-like receptor agonist promotes melanoma regression by enhancing plasmacytoid dendritic cells and T cytotoxic activity as a vaccination adjuvant and by direct tumor application. Cancer Res 78(13 Supplement):614–614

    Google Scholar 

  • Segal NH et al (2017) A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer. J Clin Oncol 32:3007

    Article  Google Scholar 

  • Sharma P et al (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirota Y, Shirota H, Klinman DM (2012) Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol 188(4):101304–101599

    Article  CAS  Google Scholar 

  • Singh M et al (2014) Effective innate and adaptive antimelanoma immunity through localized TLR7/8 activation. J Immunol 193(9):1401160–1404731

    Article  CAS  Google Scholar 

  • Siu LL et al (2017) Preliminary results of a phase I/IIa study of BMS-986156 (glucocorticoid-induced tumor necrosis factor receptor–related gene [GITR] agonist), alone and in combination with nivolumab in pts with advanced solid tumors. J Clin Oncol 35(15_suppl):104–104

    Article  Google Scholar 

  • Spranger S, Gajewski TF (2018) Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer 18(3):139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spranger S et al (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5(200):200ra116–200ra116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spranger S et al (2016) Density of immunogenic antigens does not explain the presence or absence of the T-cell–inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci 113(48):E7759–E7768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevanović S et al (2015) Complete regression of metastatic cervical cancer after treatment with human papillomavirus–targeted tumor-infiltrating T cells. J Clin Oncol 33(14):1543–1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevanović S et al (2017) Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 356(6334):200–205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sze A et al (2014) Host restriction factor SAMHD1 limits human T-cell leukemia virus (HTLV-1) infection of primary monocytes via the innate immune sensor STING. Retrovirology 11(1):O19

    Article  PubMed Central  Google Scholar 

  • Tang C-HA et al (2016) Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res 76(8):2137–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JF, Hersey P, Wachter E (2008) Chemoablation of metastatic melanoma using intralesional rose Bengal. Melanoma Res 18(6):405–411

    Article  PubMed  Google Scholar 

  • Thompson JF et al (2014) Phase 2 study of Intralesional PV-10 in refractory metastatic melanoma. Ann Surg Oncol 22(7):2135–2142

    Article  PubMed  PubMed Central  Google Scholar 

  • Tolcher AW et al (2017) Phase Ib study of PF-05082566 in combination with pembrolizumab in patients with advanced solid tumors. J Clin Oncol 34(15_suppl):3002–3002

    Article  Google Scholar 

  • Tran E et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial Cancer. Science 344(6184):641–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran E et al (2016) T-Cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375(23):2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran E, Robbins PF, Rosenberg SA (2017) “Final common pathway” of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 18(3):255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigneron N, van Baren N, Van den Eynde BJ (2015) Expression profile of the human IDO1 protein, a cancer drug target involved in tumoral immune resistance. OncoImmunology 4(5):e1003012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weichselbaum RR et al (2017) Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 14(6):365–379

    Article  CAS  PubMed  Google Scholar 

  • Wolchok JD et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo S-R et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia T, Konno H, Barber GN (2016) Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral Oncolysis. Cancer Res 76(22):6747–6759

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Rosenberg SA (2016) Adoptive T-cell therapy for Cancer. Adv Immunol 130:279–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377(25):2500–2501

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi KH, Chen L (2009) Fine tuning the immune response through B7-H3 and B7-H4. Immunol Rev 229(1):145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakharia Y et al (2018) Phase 2 trial of the IDO pathway inhibitor indoximod plus checkpoint inhibition for the treatment of patients with advanced melanoma. J Clin Oncol 36:9512

    Article  Google Scholar 

  • Zamai L et al (2007) NK cells and cancer. J Immunol 178(7):4011–4016

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Luke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Olson, D.J. et al. (2019). Novel Immunotherapies and Novel Combinations of Immunotherapy. In: Balch, C., et al. Cutaneous Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-46029-1_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46029-1_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46029-1

  • Online ISBN: 978-3-319-46029-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics