Skip to main content

In-Plane Wave Motion in Unbounded Cracked Inhomogeneous Media

  • Chapter
  • First Online:
Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 240))

  • 857 Accesses

Abstract

In this chapter, elastic wave scattering by cracks in inhomogeneous geological continua with quadratically or exponentially varying material parameters and under conditions of plane strain is studied. A restricted case of inhomogeneity is considered, where Poisson’s ratio is fixed at one-quarter, while both shear modulus and density profile vary along vertical direction, but proportionally to each other. Furthermore, time-harmonic conditions are assumed to hold. Although much of the basic BIEM formulation details were developed in Part I, here we discuss in more detail the in-plane wave motion phenomenon, where the governing differential equations are vectorial, in contrast to the anti-plane strain case, where they are scalar differential equations. The new factor here is the presence of a crack in the unbounded medium, and examples show how this crack modifies the elastic wave field. BIEM formulations for cracks involve hypersingular integrals, as mentioned in Sect. 3.4, where techniques for producing formulations that are amenable to numerical treatment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aliabadi, M., & Rooke, D. (1991). Numerical fracture mechanics. Southampton: Computational Mechanics Publications.

    Book  MATH  Google Scholar 

  • Chen, E. P., & Sih, G. C. (1977). Scattering waves about stationary and moving cracks. In G. C. Sih (Ed.), Mechanics of Fracture, Elastodynamic Crack Problems (Vol. 4, pp. 120–212).

    Google Scholar 

  • Dineva, P., Gross, D., Müller, R., & Rangelov, T. (2014). Dynamic fracture of piezoelectric materials. Solutions of time-harmonic problems via BIEM (Vol. 212), Solid Mechanics and its Applications Switzerland: Springer International Publishing.

    Google Scholar 

  • Dineva, P. S., & Manolis, G. D. (2001a). Scattering of seismic waves by cracks in multi-layered geological regions: I. Mechanical model. Soil Dynamics and Earthquake Engineering, 21, 615–625.

    Article  Google Scholar 

  • Dineva, P. S., & Manolis, G. D. (2001b). Scattering of seismic waves by cracks in multi-layered geological regions: II. Numerical results. Soil Dynamics and Earthquake Engineering, 21, 627–641.

    Article  Google Scholar 

  • Dineva, P. S., Rangelov, T. V., & Manolis, G. D. (2007). Elastic wave propagation in a class of cracked functionally graded materials by BIEM. Computational Mechanics, 39(3), 293–308.

    Article  MATH  Google Scholar 

  • Ewing, W. M., Jardetzky, W. S., & Press, F. (1957). Elastic waves in layered media. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Ladyzenskaja, O., & Urall’tzeva, N. (1973). Linear and quasilinear equations of elliptic type. Moscow: Nauka Publication.

    Google Scholar 

  • Manolis, G. D. (2003). Elastic wave scattering around cavities in inhomogeneous continua by the BEM. Journal of Sound and Vibration, 266(2), 281–305.

    Article  MATH  Google Scholar 

  • Manolis, G. D., & Beskos, D. E. (1988). Boundary element methods in elastodynamics. London: Allen and Unwin.

    Google Scholar 

  • Manolis, G. D., & Shaw, R. P. (1996). Green’s function for a vector wave equation in a mildly heterogeneous continuum. Wave Motion, 24, 59–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Manolis, G. D., Dineva, P. S., & Rangelov, T. V. (2004). Wave scattering by cracks in inhomogeneous continua using BIEM. International Journal of Solids and Structures, 41(14), 3905–3927.

    Article  MATH  Google Scholar 

  • MATH. 2008. Mathematica 6.0 for MS Windows. Champaign, Illinois.

    Google Scholar 

  • MSVS. (2005). MS Visual Studio, Professional Edition. Redmond, Washington.

    Google Scholar 

  • Rangelov, T., Dineva, P., & Gross, D. (2003). A hypersingular traction boundary integral equation method for stress intensity factor computation in a finite cracked body. Engineering Analysis with Boundary Elements, 27, 9–21.

    Article  MATH  Google Scholar 

  • Rangelov, T. V., Manolis, G. D., & Dineva, P. S. (2005). Elastodynamic fundamental solutions for certain families of 2D inhomogeneous anisotropic domains: basic derivation. European Journal of Mechanics - A/Solids, 24, 820–836.

    Article  MathSciNet  MATH  Google Scholar 

  • Vainberg, B. (1982). Asymptotic methods in equations of mathematical physics. Moscow: Moscow State University Publication.

    MATH  Google Scholar 

  • Vladimirov, V. (1971). Equations of mathematical physics. New York: Marcel Dekker Inc.

    MATH  Google Scholar 

  • Wang, C. Y., & Achenbach, J. D. (1994). Elastodynamic fundamental solutions for anisotropic solids. Geophysical Journal International, 118, 384–392.

    Article  Google Scholar 

  • Wendland, W., & Stephan, E. (1990). A hypersingular boundary integral method for two-dimensional screen and crack problems. Archive for Rational Mechanics and Analysis, 112, 363–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, C., Sladek, J., & Sladek, V. (2003). Numerical analysis of cracked functionally graded materials. Key Engineering Materials, 251(252), 463–471.

    Article  Google Scholar 

  • Zhang, C., Sladek, J., & Sladek, V. (2004a). 2-D elastodynamic crack analysis in FGMs by a time–domain BIEM. In V. M. A. Leitao, & M. H. Aliabadi (Eds.), Advances in Boumdary Element Techniques II (pp. 181–190).

    Google Scholar 

  • Zhang, C., Sladek, J., & Sladek, V. (2004b). Crack analysis in unidirectionally and bidimensionally functionally graded materials. International Journal of Fracture, 129, 385–406.

    Article  MATH  Google Scholar 

  • Zhang, C., Sladek, J., & Sladek, V. (2004c). A time–domain BIEM for crack analysis in FGMs under dynamic loading, paper 447. In Z. H. Yao, M. W. Yuan & W. X. Zhong (Eds.), Computational Mechanics.

    Google Scholar 

  • Zhang, C., Sladek, J., & Sladek, V. (2005). Transient dynamic analysis of cracked functionally graded materials. In M. H. Aliabadi, F. G. Buchholtz, J. Alfaiate, J. Planas, B. Abersek & S. Nishida (Eds.), Advances in Fracture and Damage Mechanics IV (pp. 301–308).

    Google Scholar 

  • Zhang, Ch., & Gross, D. (1998). On wave propagation in elastic solids with cracks. Southampton: Computational Mechanics.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. Manolis .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manolis, G.D., Dineva, P.S., Rangelov, T.V., Wuttke, F. (2017). In-Plane Wave Motion in Unbounded Cracked Inhomogeneous Media. In: Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements. Solid Mechanics and Its Applications, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-319-45206-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45206-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45205-0

  • Online ISBN: 978-3-319-45206-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics