Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 240))

Abstract

In this chapter, general remarks about the BIEM, fundamental solutions, and modern computational techniques for inhomogeneous 2D elastic domains are discussed, together with applications to seismic wave propagation problems. More specifically, a closer look with scales of hundreds of km reveals the Earth is both strongly inhomogeneous with a sharp gradient of variation of its material properties and also heterogeneous due to the existence of free and subsurface relief, non-parallel layers , cavities, inclusions, cracks and faults, and finally underground engineering constructions. The Earth’s varying surface geology, the existence of a geomaterial depth-dependent gradient, of topography, and of nonlinear stress–strain states in the general geological region of interest, is the cause of significant spatial variations of seismic ground motion that can lead to large amplifications during earthquakes. A quantitative prediction of strong ground motion manifestation at a given site involves dealing with the source of seismic waves, their path to that site, and the effects of local conditions. A possible way of shedding some light on the understanding of the site-response phenomena and their sensitivity to the type and properties of the seismic source, of inhomogeneity and heterogeneity in the wave path, is in developing high-performance numerical methods for the simulation of seismic wave propagation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach, J. (1973). Wave propagation in elastic solids. Amsterdam: North Holland.

    MATH  Google Scholar 

  • Agnatiaris, J. P., Polyzos, D., & Beskos, D. E. (1996). Some studies on dual reciprocity BEM for elastodynamics analysis. Computational Mechanics, 17(4), 270–277.

    Article  Google Scholar 

  • Ahmad, S., Leyte, F., & Rajapakse, R. K. N. D. (2001). BEM analysis of two-dimensional elastodynamic problems of anisotropic solids. Journal of Engineering Mechanics ASCE, 27(2), 149–156.

    Google Scholar 

  • Aizikovich, S. M., Alexandrov, V. M., Kalker, J. J., Krenev, L. I., & Trubchik, I. S. (2002). Analytical solution of the spherical indentation problem for a half-space with gradients with the depth elastic properties. International Journal of Solids and Structures, 39, 2745–2772.

    Article  MathSciNet  MATH  Google Scholar 

  • Albers, B., Savidis, S. S., Tasan, H. E., Estorff, O. V., & Gehlken, M. (2012). BEM and FEM results of displacements in a poroelastic column. International Journal of Applied Mathematics and Computer Science, 22(4), 883–896.

    Article  MathSciNet  MATH  Google Scholar 

  • Albuquerque, E. L., Sollero, P., & Aliabadi, M. H. (2002). The boundary element method applied to time dependent problems in anisotropic materials. International Journal of Solids and Structures, 39, 1405–1422.

    Article  MATH  Google Scholar 

  • Albuquerque, E. L., Sollero, P., & Fedelinski, P. (2003a). Dual reciprocity boundary element method in Laplace domain applied to anisotropic dynamic crack problems. Computers and Structures, 81, 1703–1713.

    Article  Google Scholar 

  • Albuquerque, E. L., Sollero, P., & Fedelinski, P. (2003b). Free vibration analysis of anisotropic material structures using the boundary element method. Engineering Analysis with Boundary Elements, 27, 977–985.

    Article  MATH  Google Scholar 

  • Albuquerque, E. L., Sollero, P., & Aliabadi, M. H. (2004). Dual BEM for anisotropic dynamic fracture mechanics. International Journal for Numerical Methods in Engineering, 59, 1187–1205.

    Article  MATH  Google Scholar 

  • Aliabadi, M. H. (1997). A new generation of boundary element methods in fracture mechanics. International Journal of Fracture, 86(1–2), 91–125.

    Article  Google Scholar 

  • Aliabadi, M. H. (2001). The boundary element method, applications in solids and structures (Vol. 2). Chichester: Wiley.

    Google Scholar 

  • Aliabadi, M. H. (2004). Boundary element formulations in fracture mechanics. Applied Mechanics Reviews, 50, 83–96.

    Article  Google Scholar 

  • Aliabadi, M. H., Wen, P. H., & Rooke, D. P. (1998). Dynamic dual boundary element analysis for 3-D fracture mechanics. In M. Chopra, A. J. Kassab & C. A. Brebbia (Eds.), Boundary Elements XX (pp. 33–42).

    Google Scholar 

  • Álvarez-Rubio, S., Sánchez-Sesma, F. J., Benito, J. J., & Alarcón, E. (2004). The direct boundary element method: 2 D site effects assessment on laterally varying layered media (methodology). Soil Dynamics and Earthquake Engineering, 24, 167–180.

    Article  Google Scholar 

  • Álvarez-Rubio, S., Benito, J. J., Sánchez-Sesma, F. J., & Alarcón, E. (2005). The use of direct boundary element method for gaining insight into complex seismic site response. Computers and Structures, 83, 821–835.

    Article  Google Scholar 

  • Ang, W. T., & Park, Y. S. (1997). Hypersinglar integral equations for arbitrarily located planar cracks in an anisotropic elastic bimaterial. Engineering Analysis with Boundary Elements, 20, 135–143.

    Article  Google Scholar 

  • Ang, W. T., Kusuma, J., & Clements, D. L. (1996). A boundary element method for a second order elliptic partial differential equation with variable coefficients. Engineering Analysis with Boundary Elements, 18, 311–316.

    Article  Google Scholar 

  • Ang, W. T., Clements, D. L., & Cooke, T. (1999). A hypersingular boundary integral equation for anti-plane crack problems for a class of inhomogeneous anisotropic elastic materials. Engineering Analysis with Boundary Elements, 23, 572–576.

    MATH  Google Scholar 

  • Ang, W. T., Clements, D. L., & Vahdati, N. (2003). A dual-reciprocity boundary element method for a class of elliptic boundary value problems for non-homogeneous anisotropic media. Engineering Analysis with Boundary Elements, 27, 49–55.

    Article  MATH  Google Scholar 

  • Antes, H. (1985). A boundary element procedure for transient wave propagations in two-dimensional isotropic elastic media. Finite Elements in Analysis and Design, 1, 313–322.

    Article  MATH  Google Scholar 

  • Antes, H., Steinfeld, B., & Tröndle, G. G. (1991). Recent developments in dynamic stress analyses by time domain BEM. Engineering Analysis with Boundary Elements, 8(4), 176–184.

    Google Scholar 

  • Apsel, R., & Luco, E. J. (1983). The Green’s functions for a layered half-space. Part II. Bulletin of the Seismological Society of America, 73(4), 931–951.

    Google Scholar 

  • Apsel, R., & Luco, E. J. (1987). Impedance functions for foundations embedded in a layered medium: an integral equation approach. Earthquake Engineering and Structural Dynamics, 15, 213–231.

    Article  Google Scholar 

  • Apsel, R. J. (1979). Dynamic Green’s functions for layered media and applications to boundary–value problems. M.Phil. thesis, University of California, San Diego, USA.

    Google Scholar 

  • Ariza, M. P., & Dominguez, J. (2002). General BE approach for three-dimensional dynamic fracture analysis. Engineering Analysis with Boundary Elements, 26(8), 639–651.

    Article  MATH  Google Scholar 

  • Ariza, M. P., & Dominguez, J. (2004). BE analysis of 3- D cracks in transversely isotropic solids. Computer Methods in Applied Mechanics and Engineering, 193, 765–779.

    Article  MATH  Google Scholar 

  • Aubry, D., & Clouteau, D. (1991). A regularized boundary element method for stratified media. In G. Cohen (Ed.), Proceedings of the 1st International Conference on Mathematical and Numerical Aspects of Wave Propagation (pp. 660–668)

    Google Scholar 

  • Babich, V. M. (1956). Ray Methods for the Computation of the Intensity of Wavefronts. Moskow: Nauka Publications.

    Google Scholar 

  • Bai, H., Zhu, J., Shah, S. H., & Popplewell, N. (2002). Three-dimensional steady-state Green’s function for a layered isotropic plate. Journal of Sound and Vibration, 269, 251–271.

    Article  Google Scholar 

  • Banaugh, R. P., & Goldsmith, W. (1963a). Diffraction of steady acoustic waves by surfaces of arbitrary shape. The Journal of the Acoustical Society of America, 35, 1590–1601.

    Article  MathSciNet  MATH  Google Scholar 

  • Banaugh, R. P., & Goldsmith, W. (1963b). Diffraction of steady elastic waves by surfaces of arbitrary shape. Journal of Applied Mechanics ASME, 30(4), 589–597.

    Article  MATH  Google Scholar 

  • Banerjee, P. K., & Mamoon, S. M. (1990). A fundamental solution due to a periodic point force in the interior of an elastic half-space. Earthquake Engineering and Structural Dynamics, 19, 91–105.

    Article  Google Scholar 

  • Banerjee, P. K., Ahmad, S., & Manolis, G. D. (1986). Transient elastodynamic analysis of 3-d problems by boundary element method. Earthquake Engineering and Structural Dynamics, 14, 933–949.

    Article  Google Scholar 

  • Bardet, J. P. (1992). A viscoelastic model for the dynamic behavior of saturated poroelastic soils. Journal of Applied Mechanics ASME, 59, 128–135.

    Article  MATH  Google Scholar 

  • Bardet, J. P. (1995). The damping of saturated poroelastic soils during steady-state vibrations. Applied Mathematics and Computation, 67, 3–31.

    Article  MATH  Google Scholar 

  • Barra, L. P. S., & Telles, J. C. F. (1996). A hyper-singular numerical Green’s function generation for BEM applied to dynamic SIF problems. Engineering Analysis with Boundary Elements, 23, 77–87.

    Article  MATH  Google Scholar 

  • Bebendorf, M. (1996). A hyper-singular numerical Green‘s function generation for BEM applied to dynamic SIF problems. Engineering Analysis with Boundary Elements, 23, 77–87.

    Google Scholar 

  • Beer, G. (1986). Implementation of combined boundary element finite element analysis with application in geomechanics. In P. K. Banerjee & J. O. Watson (Eds.), Developments in Boundary Element Methods 4 (pp. 191–225).

    Google Scholar 

  • Ben-Menahem, A. (1987). Green’s tensor and its potentials for inhomogeneous elastic media. Proceedings of the Royal Society of London A, 409, 287–327.

    Article  MathSciNet  MATH  Google Scholar 

  • Benedetti, I., & Aliabadi, M. H. (2009). A fast hierarchical dual boundary element method for three-dimensional elastodynamic crack problems. International Journal for Numerical Methods in Engineering, 84(9), 1038–1067.

    Article  MathSciNet  MATH  Google Scholar 

  • Benedetti, I., Milazzo, A., & Aliabadi, M. H. (2009). A fast dual boundary element method for 3 D anisotropic crack problems. International Journal for Numerical Methods in Engineering, 80(10), 1356–1378.

    Article  MathSciNet  MATH  Google Scholar 

  • Benites, R., Aki, K., & Yomigida, K. (1992). Multiple scattering of SH waves in 2 D media with many cavities. Pure and Applied Geophysics, 138, 353–390.

    Article  Google Scholar 

  • Berezovski, A., Engelbrecht, J., & Maugin, G. A. (2003). Numerical simulation of two-dimensional wave propagation in functionally graded materials. European Journal of Mechanics - A/Solids, 22, 257–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos, D. E. (1987a). BEM in mechanics. Amsterdam: Elsevier.

    Google Scholar 

  • Beskos, D. E. (1987b). Boundary element methods in dynamic analysis. Applied Mechanics Reviews, 40(1), 1–23.

    Article  Google Scholar 

  • Beskos, D. E. (1997). Boundary element methods in dynamic analysis: Part II, 1986–1996. Applied Mechanics Reviews, 50(3), 149–197.

    Article  Google Scholar 

  • Biot, M. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. The Journal of the Acoustical Society of America, 28(4), 168–191.

    Article  MathSciNet  Google Scholar 

  • Bonnet, M. (1995). Boundary integral equation methods for solids and fluids. Chichester: Wiley.

    Google Scholar 

  • Bouchon, M., & Aki, K. (1977). Discrete wavenumber representation of seismic source wave field. Bulletin of the Seismological Society of America, 67, 259–277.

    Google Scholar 

  • Bouchon, M., & Courant, O. (1994). Calculation of synthetic seismograms in a laterally varying medium by the boundary element-discrete wave number method. Bulletin of the Seismological Society of America, 84(6), 1869–1881.

    Google Scholar 

  • Boyadzhiev, G. (2015). Bi-characteristic curves of body and surface waves and application in geophysics. Serdica Mathematical Journal, 41(4), 513–526.

    MathSciNet  Google Scholar 

  • Burridge, R., & Vargas, C. A. (1979). The fundamental solution in dynamic poroelasticity. Geophysical Journal of the Royal Astronomical Society, 58(1), 61–90.

    Article  MATH  Google Scholar 

  • Chapel, F. (1987). Boundary element method applied to linear soil structure interaction on a heterogeneous soil. Earthquake Engineering and Structural Dynamics, 15, 815–829.

    Article  Google Scholar 

  • Chapel, F., & Tsakaladis, C. (1985). Computation of the Green’s functions of elastodynamics for a layered half space through a Hankel transform, applications to foundation vibration and seismology. I. Kawamoto (Ed.), Numerical Methods in Geomechanics (pp. 1311–1318).

    Google Scholar 

  • Chen, J., & Hong, H. K. (1999). Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series. Applied Mechanics Reviews, 52(1), 17–33.

    Article  MathSciNet  Google Scholar 

  • Chen, J., & Liu, Z. X. (2005). Transient response of a mode III crack in an orthotropic functionally graded strip. European Journal of Mechanics - A/Solids, 24, 325–336.

    Article  MATH  Google Scholar 

  • Chen, J., Liu, Z. X., & Zou, Z. Z. (2002). Transient internal crack problem for a nonhomogeneous orthotropic strip (mode I). International Journal of Engineering Science, 40, 1761–1774.

    Article  Google Scholar 

  • Chen, J. T., Lee, J. W., Wu, C. F., & Chen, I. L. (2011). SH-wave diffraction by a semi-circular hill revisited: a null-field boundary integral equation method using degenerate kernels. Soil Dynamics and Earthquake Engineering, 31, 729–736.

    Article  Google Scholar 

  • Chen, L., Kassab, A. J., Nicholson, D. W., & Chopra, M. B. (2001). Generalized boundary element method for solids exhibiting nonhomogeneities. Earthquake Engineering and Structural Dynamics, 25, 407–422.

    MATH  Google Scholar 

  • Chen, W. H., & Chen, T. C. (1995). Efficient dual boundary element technique for two-dimensional fracture problem with multiple cracks. International Journal for Numerical Methods in Engineering, 38, 1739–1756.

    Article  MATH  Google Scholar 

  • Chen, X. (1996). Seismograms synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. Part III: Theory of 2 D P- SV case. Bulletin of the Seismological Society of America, 86, 389–405.

    Google Scholar 

  • Cheng, A. H. -D. (2016). Poroelasticity (Vol. 27), Theory and Applications of Transport in Porous Media. Cham: Springer.

    Google Scholar 

  • Cheng, A. H. D., Badmus, T., & Beskos, D. E. (1991). Integral equation for dynamic poroelasticity in frequency domain with BEM solution. Journal of Engineering Mechanics ASCE, 117, 1136–1157.

    Article  Google Scholar 

  • Chirino, F., & Dominguez, J. (1989). Dynamic analysis of cracks using BEM. Engineering Fracture Mechanics, 34, 1051–1061.

    Article  Google Scholar 

  • Chuhan, Z., Yuntao, R., Pekau, O. A., & Feng, J. (2004). Time-domain boundary element method for underground structures in orthotropic media. Journal of Engineering Mechanics ASCE, 130(1), 105–116.

    Article  Google Scholar 

  • Clements, D. L. (1980). A boundary integral equation method for the numerical solution of a second-order elliptic partial differential equation with variable coefficients. The Journal of the Australian Mathematical Society Series B, 22, 218–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Clements, D. L. (1998). Fundamental solutions for second order linear elliptic partial differential equations. Computational Mechanics, 22, 26–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Clouteau, D. (1990). Propagation dondes dans des milieux héérogénes, A pplication á la tenue douvrages sous séismes. Ph.D. thesis, Ecole Centrale de Paris, Paris.

    Google Scholar 

  • Cole, D. M., Kosloff, D. D., & Minster, J. B. (1978). A numerical boundary integral method for elastodynamics. Bulletin of the Seismological Society of America, 68(5), 1331–1357.

    Google Scholar 

  • Crouch, S. L., & Starfield, A. M. (1983). Boundary element methods in solid mechanics. London: George Allen and Unwin.

    MATH  Google Scholar 

  • Cruse, T. A. (1968). A direct formulation and numerical solution of the general transient elastodynamic problem: II. Journal of Mathematical Analysis and Applications, 22, 341–355.

    Article  MATH  Google Scholar 

  • Cruse, T. A. (1978). Two-dimensional BIE fracture mechanics analysis. Applied Mathematical Modelling, 2, 287–293.

    Article  MATH  Google Scholar 

  • Cruse, T. A. (1988). Boundary element analysis in computational fracture mechanics. Dordrecht: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Cruse, T. A. (1996). BIE fracture mechanics analysis: 25 years of developments. Computational Mechanics, 18, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Cruse, T. A., & Rizzo, F. J. (1968). A direct formulation and numerical solution of the general transient elastodynamic problem: I. Journal of Mathematical Analysis and Applications, 22, 244–259.

    Article  MATH  Google Scholar 

  • Daros, C. H. (2008). A fundamental solution for SH-waves in a class of inhomogeneous anisotropic media. International Journal of Engineering Science, 46, 809–817.

    Article  MathSciNet  MATH  Google Scholar 

  • Daros, C. H. (2009). A time-harmonic fundamental solution for a class of inhomogeneous transversely isotropic media. Wave Motion, 46(4), 269–279.

    Article  MathSciNet  MATH  Google Scholar 

  • Daros, C. H. (2010). On modeling SH waves in a class of inhomogeneous anisotropic media via the Boundary Element Method. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 90(2), 113–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Daros, C. H. (2013). Green’s function for SH-waves in inhomogeneous anisotropic elastic solid with power-function velocity variation. Wave Motion, 50(2), 101–110.

    Article  MathSciNet  Google Scholar 

  • Datta, S. K., & Shah, A. H. (2008). Elastic waves in composite media and structures. With applications to ultrasonic nondestructive evaluation. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Dellerba, D. N., Aliabadi, M. H., & Rooke, D. P. (1998). Dual boundary element method for three-dimensional thermoelastic crack problems. International Journal of Fracture, 94, 89–101.

    Article  Google Scholar 

  • Dineva, P., Rangelov, T., & Gross, D. (2005). BIEM for 2 D steady-state problems in cracked anisotropic materials. Engineering Analysis with Boundary Elements, 29(7), 689–698.

    Article  MATH  Google Scholar 

  • Dineva, P., Wuttke, F., & Manolis, G. (2012a). Elastic wavefield evaluation in discontinuous poroelastic media by BEM: SH wave. Theoretical and Applied Mechanics, 42(3), 75–100.

    MathSciNet  Google Scholar 

  • Dineva, P., Datcheva, M., Manolis, G., & Schanz, T. (2012b). Seismic wave propagation in laterally inhomogeneous porous media by BIEM. International Journal for Numerical and Analytical Methods in Geomechanics, 36(2), 111–127.

    Article  Google Scholar 

  • Dineva, P., Gross, D., Müller, R., & Rangelov, T. (2014). Dynamic fracture of piezoelectric materials. solutions of time-harmonic problems via BIEM (Vol. 212), Solid mechanics and its applications Cham: Springer.

    Google Scholar 

  • Dineva, P. S., & Manolis, G. D. (2001a). Scattering of seismic waves by cracks in multi-layered geological regions: I. Mechanical Model. Soil Dynamics and Earthquake Engineering, 21, 615–625.

    Article  Google Scholar 

  • Dineva, P. S., & Manolis, G. D. (2001b). Scattering of seismic waves by cracks in multi-layered geological regions: II. Numerical Results. Soil Dynamics and Earthquake Engineering, 21, 627–641.

    Article  Google Scholar 

  • Dineva, P. S., Vaccari, F., & Panza, G. (2003). Hybrid modal summation- BIE method for site effect estimation of a seismic region in a laterally varying media. Journal of Theoretical and Applied Mechanics, 33(4), 55–88.

    MathSciNet  Google Scholar 

  • Dineva, P. S., Manolis, G. D., & Rangelov, T. V. (2004). Transient seismic wave propagation in a multilayered cracked geological region. Journal of Sound and Vibration, 273, 1–32.

    Article  MATH  Google Scholar 

  • Dineva, P. S., Manolis, G. D., & Rangelov, T. V. (2006). Sub-surface crack in inhomogeneous half-plane:wave scattering phenomena by BEM. Engineering Analysis with Boundary Elements, 30(5), 350–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Dineva, P. S., Rangelov, T. V., & Manolis, G. D. (2007). Elastic wave propagation in a class of cracked functionally graded materials by BIEM. Computational Mechanics, 39(3), 293–308.

    Article  MATH  Google Scholar 

  • Dominguez, J. (1991). An integral formulation for dynamic poroelasticity. Journal of Applied Mechanics ASME, 58, 588–591.

    Article  MATH  Google Scholar 

  • Dominguez, J. (1992). Boundary element approach for dynamic poroelasticity problems. International Journal for Numerical Methods in Engineering, 35, 307–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Dominguez, J. (1993). Boundary elements in dynamics. Southampton: Computational Mechanics Publications.

    MATH  Google Scholar 

  • Dominguez, J., & Ariza, M. P. (2000). A direct traction BIE for three-dimensional crack problems. Engineering Analysis with Boundary Elements, 24, 727–738.

    Article  MATH  Google Scholar 

  • Dominguez, J., & Gallego, R. (1992). Time domain boundary element method for dynamic stress intensity factor computations. International Journal for Numerical Methods in Engineering, 33, 635–647.

    Article  MATH  Google Scholar 

  • Dong, C. Y., Lo, S. H., & Cheung, Y. K. (2003). Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Computer Methods in Applied Mechanics and Engineering, 192, 683–696.

    Article  MATH  Google Scholar 

  • Dong, C. Y., Lo, S. H., & Cheung, Y. K. (2004). Numerical solution for elastic half-plane inclusion problems by different integral equation approaches. Engineering Analysis with Boundary Elements, 28, 123–130.

    Article  MATH  Google Scholar 

  • Doyle, J. M. (1966). Integration of the Laplace transformed equations of classic elastokinetics. Journal of Mathematical Analysis and Applications, 13, 118–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Dravinski, M. (1982a). Influence of interface depth upon strong ground motion. Bulletin of the Seismological Society of America, 72, 597–614.

    Google Scholar 

  • Dravinski, M. (1982b). Scattering of SH-waves by subsurface topography. Journal of the Engineering Mechanics Division ASCE, 108, 1–17.

    Google Scholar 

  • Dravinski, M., & Wilson, M. S. (2001). Scattering of elastic waves by a general anisotropic basin. Part 1: 2 D model. Earthquake Engineering and Structural Dynamics, 30, 675–689.

    Article  Google Scholar 

  • Dravinski, M., & Yu, M. C. (2011). Scattering of plane harmonic SH-waves by multiple inclusions. Geophysical Journal International, 186(3), 1331–1346.

    Article  Google Scholar 

  • Dravinski, M., & Yu, M. C. (2013). The effect of impedance contrast upon surface motion due to scattering of plane harmonic P, SV, and Rayleigh waves by a randomly corrugated elastic inclusion. Journal of Seismology, 17, 281–295.

    Article  Google Scholar 

  • Eason, G. (1964). On the torsional impulsive loading of an elastic half-space. Quarterly Journal of Mechanics and Applied Mathematics, 17, 279–292.

    Article  MathSciNet  MATH  Google Scholar 

  • Eason, G., Fulton, J., & Sneddon, I. N. (1956). The generation of waves in an infinite elastic solid by variable body forces. Philosophical Transactions of the Royal Society (London) (A), 248, 575–607.

    Google Scholar 

  • Eischen, J. W. (1987). Fracture of nonhomogeneous materials. International Journal of Fracture, 34(3), 3–22.

    Google Scholar 

  • Erdogan, F. (1985). The crack problem for bonded nonhomogeneous materials under antiplane shear loading. Journal of Applied Mechanics ASME, 52(4), 823–828.

    Article  MathSciNet  MATH  Google Scholar 

  • Erdogan, F. (1995). Fracture mechanics of functionally graded materials. Composites Engineering, 5(7), 753–770.

    Article  Google Scholar 

  • Eringen, A. C., & Suhubi, E. S. (1975). Elastodynamics: Volumes I and II. New York: Academic Press.

    MATH  Google Scholar 

  • Eshelby, J. D., Read, W. T., & Shockley, W. (1953). Anisotropic elasticity with applications to dislocation theory. Acta Metallurgica, 1, 251–259.

    Article  Google Scholar 

  • Ewing, W. M., Jardetzky, W. S., & Press, F. (1957). Elastic waves in layered media. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Fäh, D. (1992). A hybrid technique for the estimation of strong ground motion in sedimentary basins. Ph.D. thesis, Swiss Federal Institute of Technology, ETH Publication no. 9767, Zurich.

    Google Scholar 

  • Fedelinski, P., Aliabadi, M. H., & Rooke, D. P. (1995a). Boundary element formulations for the dynamic analysis of cracked structures. In M. H., Aliabadi (Ed.), Dynamic fracture mechanics (pp. 61–100).

    Google Scholar 

  • Fedelinski, P., Aliabadi, M. H., & Rooke, D. P. (1995b). The dual boundary element method: J-integral for dynamic stress intensity factors. International Journal of Fracture, 65, 369–381.

    Article  MATH  Google Scholar 

  • Fedelinski, P., Aliabadi, M. H., & Rooke, D. P. (1996a). Boundary element formulations for the dynamic analysis of cracked structures. Engineering Analysis with Boundary Elements, 17, 45–56.

    Article  MATH  Google Scholar 

  • Fedelinski, P., Aliabadi, M. H., & Rooke, D. P. (1996b). The Laplace transform DBEM for mixed-mode dynamic crack analysis. Computers and Structures, 59(6), 1021–1031.

    Article  MATH  Google Scholar 

  • Fjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., & Risnes, R. (2008). Petroleum related rock mechanics. Amsterdam: Elsevier.

    Google Scholar 

  • Frangi, A., Novati, G., Springhetti, R., & Rovizzi, M. (2002). 3 D fracture analysis by the symmetric Galerkin BEM. Computational Mechanics, 28(3–4), 220–232.

    Article  MATH  Google Scholar 

  • Friedman, M. B., & Shaw, R. (1962). Diffraction of pulses by cylindrical obstacles of arbitrary cross section. Journal of Applied Mechanics, 29(1), 40–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Fujiwara, H. (1998). The fast multipole method for integral equations of seismic scattering problems. Geophysical Journal International, 133(3), 773–782.

    Article  Google Scholar 

  • Furukawa, A., Saitoh, T., & Hirose, S. (2014). Convolution quadrature time-domain boundary element method for 2- D and 3- D elastodynamic analyses in general anisotropic elastic solids. Engineering Analysis with Boundary Elements, 39, 64–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Gallego, R., & Dominguez, J. (1997). Solving transient dynamic crack problems by the hypersingular boundary element method. Fatigue and Fracture of Engineering Materials and Structures, 20(5), 799–812.

    Article  Google Scholar 

  • Gao, S. W., Wang, B. L., & Ma, X. R. (2001). Scattering of elastic wave and dynamic stress concentrations in thin plate with a circular cavity. Engineering Mechanics, 18(2), 14–20.

    Article  Google Scholar 

  • Garcia-Sanchez, F. 2005. Numerical study of fracture problems in elastic anisotropic and piezoelectric solids. Ph.D. thesis, Department of Continuous Media, Structures and Geoengineering, University of Seville, Spain.

    Google Scholar 

  • Garcia-Sanchez, F., & Zhang, C. (2007). A comparative study of three BEM for transient dynamic crack analysis of 2- D anisotropic solids. Computational Mechanics, 40, 753–769.

    Article  MATH  Google Scholar 

  • Garcia-Sanchez, F., Saez, A., & Dominguez, J. (2004). Traction boundary elements for cracks in anisotropic solids. Engineering Analysis with Boundary Elements, 28(6), 667–676.

    Article  MATH  Google Scholar 

  • Garcia-Sanchez, F., Saez, A., & Dominguez, J. (2006). Two-dimensional time-harmonic BEM for cracked anisotropic solids. Engineering Analysis with Boundary Elements, 30(2), 88–99.

    Article  MATH  Google Scholar 

  • Gatmiri, B., & Arson, C. (2008). Seismic site effects by an optimized 2D BE/FE method. II. Quantification of site effects in two-dimensional sedimentary valleys. Soil Dynamics and Earthquake Engineering, 28(8), 646–661.

    Google Scholar 

  • Gatmiri, B., & Eslami, H. (2007). Scattering of harmonic waves by a circular cavity in a porous medium: complex functions theory approach. International Journal of Geomechanics, 7(5), 371–381.

    Article  Google Scholar 

  • Gatmiri, B., & Jabbari, E. (2005a). Time domain Green’s functions for unsaturated soils. Part I: Two dimensional solution. International Journal of Solids and Structures, 42, 5971–5990.

    Article  MathSciNet  MATH  Google Scholar 

  • Gatmiri, B., & Jabbari, E. (2005b). Time domain Green’s functions for unsaturated soils. Part II: Three dimensional solution. International Journal of Solids and Structures, 42, 5991–6002.

    Article  MathSciNet  MATH  Google Scholar 

  • Gatmiri, B., & Kamalian, M. (2002). On the fundamental solution of dynamic poroelastic boundary integral equations in time domain. International Journal of Geomechanics, 2(4), 381–398.

    Article  Google Scholar 

  • Gatmiri, B., & Nguyen, K. V. (2005). Time 2 D fundamental solution for saturated porous media with incompressible fluid. Communications in Numerical Methods in Engineering, 21(3), 119–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Gatmiri, B., Arson, C., & Nguyen, K. V. (2008). Seismic site effects by an optimized 2 D BE/ FE method I. Theory, numerical optimization and application to topographical irregularities. Soil Dynamics and Earthquake Engineering, 28, 632–645.

    Article  Google Scholar 

  • Gil-Zepeda, S. A., Luzon, F., Aguirre, J., Morales, J., Sanchez-Sesma, F. J., & Ortiz-Aleman, C. (2002). 3 D seismic response of the deep basement-structure of the Granada basin (Southern Spain). Bulletin of the Seismological Society of America, 92(6), 2163–2176.

    Article  Google Scholar 

  • Gil-Zepeda, S. A., Montalvo-Arrieta, J. C., Vai, R., & Sanchez-Sesma, F. J. (2003). A hybrid direct boundary element-discrete wave number method applied to simulate the seismic response of stratified alluvial valleys. Soil Dynamics and Earthquake Engineering, 23, 77–86.

    Article  Google Scholar 

  • Gonsalves, I. R., Shippy, D. J., & Rizzo, F. J. (1990). Direct boundary integral equations for elastodynamics in 3- D half-spaces. Computational Mechanics, 6, 279–292.

    Article  MATH  Google Scholar 

  • Graffi, D. (1946). Sul teorema di reciprocita nella dinamica dei corpi elastici. Memorie della Reale Accademia delle Scienze dell’Istituto di Bologna, 104, 103–111.

    MathSciNet  MATH  Google Scholar 

  • Graffi, D. (1998). On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites. Journal of the Mechanics and Physics of Solids, 46, 1141–1462.

    MathSciNet  Google Scholar 

  • Guan, F., & Norris, A. (1992). Elastic wave scattering by rectangular cracks. International Journal of Solids and Structures, 29, 1549–1565.

    Article  MATH  Google Scholar 

  • Guan, F., & Novak, M. (1994a). Transient response of a group rigid strip foundations due to impulsive loading. Earthquake Engineering and Structural Dynamics, 23, 671–685.

    Article  Google Scholar 

  • Guan, F., & Novak, M. (1994b). Transient response of a half-space due to rectangular impulse loading. Journal of Applied Mechanics ASME, 61, 256–263.

    Article  MATH  Google Scholar 

  • Guan, F., Moore, I. D., & Spyrakos, C. C. (1998). Two dimensional transient fundamental solution due to suddenly applied load in a half-space. Soil Dynamics and Earthquake Engineering, 17, 269–277.

    Article  Google Scholar 

  • Guo, L. C., Wu, L. Z., Zeng, T., & Ma, L. (2004). Mode I crack problem for a functionally graded orthotropic strip. European Journal of Mechanics - A/Solids, 23, 219–234.

    Article  MATH  Google Scholar 

  • Guz, A. N., Guz, I. A., Menshykov, A. V., & Menshykov, V. A. (2013). Three-dimensional problems in the dynamic fracture mechanics of materials with interface cracks (review). International Applied Mechanics, 49(1), 1–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Guzina, B. B., & Pak, R. Y. S. (1996). Elastodynamic Green’s functions for a smoothly heterogeneous half-space. International Journal of Solids and Structures, 33, 1005–1021.

    Article  MATH  Google Scholar 

  • Hackbusch, W. (1999). A sparse matrix arithmethic based on H- Matrices. Part I: Introduction to H- Matrices. Composites, Part B, 62, 89–108.

    MathSciNet  MATH  Google Scholar 

  • Hackbusch, W., & Nowak, Z. P. (1989). On the fast matrix multiplication in the boundary element method by panel clustering. Numerische Mathematik, 54, 463–491.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, L., Lee, V. W., & Liang, J. (2010). Anti-plane (SH) waves diffraction by an underground semi-circular cavity: analytical solution. Earthquake Engineering and Engineering Vibration, 9(3), 385–396.

    Article  Google Scholar 

  • Harkider, D. G. (1964). Surface waves in multilayered elastic media. Part 1. Bulletin of the Seismological Society of America, 54, 627–679.

    Google Scholar 

  • Haskell, N. A. (1953). The dispersion of surface waves in multilayered media. Bulletin of the Seismological Society of America, 43, 17–34.

    MathSciNet  Google Scholar 

  • Hirai, H. (1988). Analysis of transient response of SH-wave scattering in a half-space by the boundary element method. Engineering Analysis, 5(4), 189–194.

    Article  MathSciNet  Google Scholar 

  • Hirose, S. (1989). Scattering from an elliptic crack by the time–domain boundary integral equation method. In C. A., Brebbia & J. J. Connor (Eds.), Advances in Boundary Elements Stress Analysis (pp. 99–110).

    Google Scholar 

  • Hirose, S., Zhang, C., & Wang, C. Y. (2002). A comparative study on two time domain BEM/BIEM for transient dynamic crack analysis of anisotropic solids. In Z. Yao & M. H. Aliabadi (Eds.), BeTeQ 3rd International Conference, Tsinghua University (pp. 106–112).

    Google Scholar 

  • Hisada, Y. (1994). An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths (Part 1). Bulletin of the Seismological Society of America, 84(5), 1456–1472.

    Google Scholar 

  • Hisada, Y. (1995). An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths (Part 2). Bulletin of the Seismological Society of America, 85(4), 1080–1093.

    Google Scholar 

  • Hisada, Y., Aki, K., & Teng, T. L. (1993a). 3- D simulations of the surface wave propagation in the Kanto sedimentary basin, Japan (Part I: Application of the surface wave Gaussian Beam method). Bulletin of the Seismological Society of America, 83(6), 1676–1699.

    Google Scholar 

  • Hisada, Y., Aki, K., & Teng, T. L. (1993b). 3- D simulations of the surface wave propagation in the Kanto sedimentary basin, Japan (Part II: Application of the surface wave BEM). Bulletin of the Seismological Society of America, 83(6), 1700–1720.

    Google Scholar 

  • Hook, J. F. (1962). Green’s function for axially symmetric elastic waves in unbounded inhomogeneous media having constant velocity gradients. Journal of Applied Mechanics ASME, E-29, 293–298.

    Google Scholar 

  • Itagaki, M. (2000). Advanced dual-reciprocity method based on polynomial source and its application to eigenvalue problem for non-uniform media. Engineering Analysis with Boundary Elements, 24, 169–176.

    Article  MATH  Google Scholar 

  • Itô, K. (2000). Encyclopedic dictionary of mathematics. Kingsport: MIT Press.

    MATH  Google Scholar 

  • Jin, Z. H., & Noda, N. (1994). Crack-tip singular fields in nonhomogeneous materials. Journal of Applied Mechanics ASME, 61, 738–740.

    Article  MATH  Google Scholar 

  • Johnson, I. R. (1974). Green’s function for Lambs problem. Geophysical Journal of the Royal Astronomical Society, 37, 99–131.

    Article  Google Scholar 

  • Kakar, R., & Kakar, S. (2012). Propagation of Love waves in a non-homogeneous elastic media. Journal of Academia and Industrial Research, 1(6), 323–328.

    MATH  Google Scholar 

  • Karabalis, D. L., & Beskos, D. E. (1984). Dynamic response of 3- D rigid surface foundations by time domain boundary element method. Earthquake Engineering and Structural Dynamics, 12, 73–93.

    Article  Google Scholar 

  • Katsikadelis, J. T. (2003). The BEM for nonhomogeneous bodies. Archive of Applied Mechanics, 74, 780–789.

    Article  MATH  Google Scholar 

  • Kattis, S. E., Beskos, D. E., & Cheng, A. H. D. (2003). 2 D dynamic response of unilined and lined tunnels in poroelastic soil to harmonic body waves. Earthquake Engineering and Structural Dynamics, 32, 97–110.

    Article  Google Scholar 

  • Kausel, E. (1981). An explicit solution for the Green functions for dynamic loads in layered media. Technical report, MIT Research Rep. R81-13, Cambridge, MA.

    Google Scholar 

  • Kausel, E. (2006). Fundamental solutions in elastodynamics: a compendium. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kausel, E., & Peek, R. (1982). Dynamics loads in the interior of a layered stratum: an explicit solution. Bulletin of the Seismological Society of America, 72(5), 1459–1481.

    Google Scholar 

  • Kawano, M., Matsuda, S., Yamada, K. T., & J., (1994). Seismic response of three-dimensional alluvial deposit with irregularities foe incident wave motion from a point source. Bulletin of the Seismological Society of America, 84, 1801–1814.

    Google Scholar 

  • Kennett, B. L. N. (1983). Seismic wave propagation in stratified media. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Kim, J., & Papageorgiou, A. S. (1993). Discrete wavenumber boundary-element method for 3- D scattering problems. Journal of Engineering Mechanics ASCE, 119(3), 603–624.

    Article  Google Scholar 

  • Kitahara, M., Nakagawa, K., & Achenbach, J. D. (1989). Boundary-integral equation method for elastodynamic scattering. Computational Mechanics, 5, 129–144.

    Article  MATH  Google Scholar 

  • Kobayashi, S. (1983). Some problems of the boundary integral equation method in elastodynamics. In C. A. Brebbia, T. Futagami, & M. Tanaka (Eds.) Boundary Elements V (pp. 775–784).

    Google Scholar 

  • Kobayashi, S. (1987). Elastodynamics. In D. E. Beskos (Ed.), BEM in Mechanics (pp. 191–255).

    Google Scholar 

  • Kobayashi, S., & Nishimura, N. (1980). Green’s tensirs for elastic half-space, an application to the BIEM. XLII: Memoirs of the Faculty of Engineering, Kyoto University. (pp. 228–241)

    Google Scholar 

  • Kogl, M., & Gaul, L. (2000). A 3-D boundary element method for dynamic analysis of anisotropic elastic solids. Computer Modeling in Engineering and Sciences, 1, 27–43.

    MATH  Google Scholar 

  • Konda, N., & Erdogan, F. (1994). The mixed-mode crack problem in a nonhomogeous elastic plane. Engineering Fracture Mechanics, 47, 533–545.

    Article  Google Scholar 

  • Kong, F., Yao, Z., & Zheng, X. (2002). BEM for simulation of a 2 D elastic body with randomly distributed circular inclusions. Acta Mechanica Solida Sinica, 15(1), 81–88.

    Google Scholar 

  • Kontoni, D. P. N., Beskos, D. E., & Manolis, G. D. (1987). Uniform half-plane elastodynamic problems by an approximate Boundary Element Method. Soil Dynamics and Earthquake Engineering, 6(4), 227–238.

    Article  Google Scholar 

  • Kuvashinov, B., & Mulder, W. A. (2006). The exact solution of the time-harmonic wave equation for linear velocity profile. Geophysical Journal International, 167, 659–662.

    Article  Google Scholar 

  • Lachat, J. C., & Watson, J. O. (1976). Effective numerical treatment of boundary integral equation. International Journal for Numerical Methods in Engineering, 10, 991–1005.

    Article  MATH  Google Scholar 

  • Lamb, H. (1904). On the propagation of tremors over the surface of an elastic solid. Philosophical Transactions of the Royal Society A, 203, 1–42.

    Article  MATH  Google Scholar 

  • Lee, J., Lee, H., & Mal, A. (2004a). A mixed volume and boundary integral equation technique for elastic wave field calculations in heterogeneous materials. Wave Motion, 39, 1–19.

    Article  MATH  Google Scholar 

  • Lee, V. W., & Manoogian, M. E. (1995). Surface motion above an arbitrary shape underground cavity for incident SH waves. Journal of European Earthquake Engineering, 7(1), 3–11.

    Google Scholar 

  • Lee, V. W., & Serif, R. I. (1996). Diffraction around circular canyon in elastic wedge space by plane SH waves. Journal of Engineering Mechanics ASCE, 125(6), 539–544.

    Article  Google Scholar 

  • Lee, V. W., & Trifunac, M. D. (1983). Response of tunnels to incident SH waves. Journal of Engineering Mechanics ASCE, 73, 1637–1653.

    Google Scholar 

  • Lee, V. W., Chen, S., & Hsu, I. R. (1996). Anti-plane diffraction from canyon above subsurface unlined tunnel. Journal of Engineering Mechanics ASCE, 125(6), 668–675.

    Article  Google Scholar 

  • Lee, V. W., Hao, L., & Liang, J. (2004b). Diffraction of anti-plane SH-waves by a semi-circular cylindrical hill with an inside concentric semi-circular tunnel. Earthquake Engineering and Engineering Vibration, 3(2), 249–262.

    Article  Google Scholar 

  • Leite, L. G. S., & Venturini, W. S. (2006). Accurate modelling of rigid and soft inclusions in 2 D elastic solids by the boundary element method. Computers and Structures, 84, 1874–1881.

    Article  Google Scholar 

  • Le’khninski, S. G. (1963). Theory of elasticity of an anisotropic body. San Francisco: Holden-Day.

    Google Scholar 

  • Li, S., Mear, M. E., & Xiao, L. (1998). Symmetric weak form integral equation method for three-dimensional fracture analysis. Computer Methods in Applied Mechanics and Engineering, 151(3–4), 435–459.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, J., & Liu, Z. (2009). Diffraction of plane SV waves by a cavity in poroelastic half-space. Earthquake Engineering and Engineering Vibration, 8(1), 29–46.

    Article  Google Scholar 

  • Liang, J., Luo, H., & Lee, V. W. (2004). Scattering of plane SH waves by a circular-arc hill with a circular tunnel. Acta Seismologica Sinica, 17(5), 549–563.

    Article  Google Scholar 

  • Liang, J., Ba, Z., & Lee, V. W. (2007a). Scattering of plane P-waves around a cavity in poroelastic half-space: I. Analytical solution. Earthquake Engineering and Engineering Vibration, 27(1), 1–6.

    Google Scholar 

  • Liang, J., Ba, Z., & Lee, V. W. (2007b). Scattering of plane P-waves around a cavity in poroelastic half-space: II. Numerical results. Earthquake Engineering and Engineering Vibration, 27(1), 7–11.

    Google Scholar 

  • Liu, E., & Zhang, Z. J. (2001). Numerical study of elastic wave scattering by distributed cracks or cavities using the boundary integral method. Journal of Computational Acoustics, 9(3), 1039–1054.

    Article  Google Scholar 

  • Liu, E., Crampin, S., & Hudson, J. A. (1997). Diffraction of seismic wave by cracks with application to hydraulic fracturing. Geophysics, 62(1), 253–265.

    Article  Google Scholar 

  • Liu, E., Zhang, Z. J., Yue, J., & Dobson, A. (2008). Boundary integral modeling of elastic wave propagation in multi-layered 2 D media with irregular interfaces. Communications in Computational Physics, 3(1), 52–62.

    MATH  Google Scholar 

  • Liu, Y. J. (2009). Fast multipole boundary element method: theory and applications in engineering. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Liu, Y. J., Mukherjee, S., Nishimura, N., Schanz, M., Ye, W., Sutradharand, A., et al. (2012). Recent advances and emerging applications of the boundary element method. Applied Mechanics Reviews, 64(3), 1–38.

    Article  Google Scholar 

  • Love, A. E. H. (1944). A treatise on the mathematical theory of elasticity. New York: Dover Publications.

    MATH  Google Scholar 

  • Lubich, C. (1988). Convolution quadrature and discretized operational calculus - I. Numerische Mathematik, 52(2), 129–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Luco, J. E., & Apsel, R. J. (1983). On the Green’s functions for layered half-space. Part I. Bulletin of the Seismological Society of America, 73, 909–929.

    Google Scholar 

  • Luco, J. E., & Barros, C. P. (1994). Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space. Earthquake Engineering and Structural Dynamics, 23, 321–340.

    Article  Google Scholar 

  • Luco, J. E., Wong, H. L., & DeBarros, F. C. (1990). Three-dimensional response of a cylindrical canyon in a layered half-space. Earthquake Engineering and Structural Dynamics, 19, 799–817.

    Article  Google Scholar 

  • Luzon, F., Ramirez, L., Sanchez-Sesma, F. J., & Posadas, A. (2003). Propagation of SH elastic waves in deep sedimentary basins with an oblique velocity gradient. Wave Motion, 38, 11–23.

    Article  MATH  Google Scholar 

  • Luzon, F., Ramirez, L., Sanchez-Sesma, F. J., & Posadas, A. (2004). Simulation of the seismic response of sedimentary basins with vertical constant-gradient of velocity. Pure and Applied Geophysics, 12, 1533–1547.

    Google Scholar 

  • Luzon, F., Sanchez-Sesma, F. J., Perez-Ruiz, A., Ramirez, L., & Pech, A. (2009). In-plane seismic response of inhomogeneous alluvial valleys with vertical gradients of velocities and constant Poisson ration. Soil Dynamics and Earthquake Engineering, 29, 994–1004.

    Article  Google Scholar 

  • Manolis, G., Makra, K., Dineva, P., & Rangelov, T. (2013). Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique. Earthquake and Structures, 5(2), 161–205.

    Article  Google Scholar 

  • Manolis, G., Parvanova, S., Makra, K., & Dineva, P. (2015). Seismic response of buried metro tunnels by a hybrid FDM- BEM approach. Bulletin of Earthquake Engineering, 13(7), 1953–1977.

    Article  Google Scholar 

  • Manolis, G. D. (1983). A comparative study on three boundary element method approaches to problems in elastodynamics. International Journal for Numerical Methods in Engineering, 19, 73–91.

    Article  MATH  Google Scholar 

  • Manolis, G. D. (2003). Elastic wave scattering around cavities in inhomogeneous continua by the BEM. Journal of Sound and Vibration, 266(2), 281–305.

    Article  MATH  Google Scholar 

  • Manolis, G. D., & Beskos, D. E. (1981). Dynamic stress concentration studies by boundary integrals and Laplace transform. International Journal for Numerical Methods in Engineering, 17(2), 573–599.

    Article  MATH  Google Scholar 

  • Manolis, G. D., & Beskos, D. E. (1988). Boundary element methods in elastodynamics. London: Allen and Unwin.

    Google Scholar 

  • Manolis, G. D., & Beskos, D. E. (1989). Integral formulation and fundamental solutions of dynamic poroelasticity and thermoelasticity. Acta Mechanica, 76, 89–104.

    Article  MATH  Google Scholar 

  • Manolis, G. D., & Davies, T. G. (1993). Boundary element techniques in geomechanics. Southampton: Computational Mechanics Publications.

    MATH  Google Scholar 

  • Manolis, G. D., & Dineva, P. S. (2015). Elastic waves in continuous and discontinuous geological media by boundary integral equation methods: A review. Soil Dynamics and Earthquake Engineering, 70, 11–29.

    Article  Google Scholar 

  • Manolis, G. D., & Shaw, R. P. (1996). Green’s function for a vector wave equation in a mildly heterogeneous continuum. Wave Motion, 24, 59–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Manolis, G. D., & Shaw, R. P. (1997). Fundamental solutions to Helmholtz’s equation for inhomogeneous media by a first-order differential equation system. Soil Dynamics and Earthquake Engineering, 16, 81–94.

    Article  Google Scholar 

  • Manolis, G. D., & Shaw, R. P. (2000). Fundamental solutions for variable density two-dimensional elastodynamic problems. Engineering Analysis with Boundary Elements, 24, 739–750.

    Article  MATH  Google Scholar 

  • Manolis, G. D., Shaw, R. P., & Pavlou, S. (1999a). Elastic waves in non-homogeneous media under 2 D conditions: I Fundamental solutions. Soil Dynamics and Earthquake Engineering, 18(1), 19–30.

    Article  Google Scholar 

  • Manolis, G. D., Shaw, R. P., & Pavlou, S. (1999b). Elastic waves in non-homogeneous media under 2 D conditions: I Fundamental solutions. Soil Dynamics and Earthquake Engineering, 18(1), 31–46.

    Article  Google Scholar 

  • Manolis, G. D., Dineva, P. S., & Rangelov, T. V. (2004). Wave scattering by cracks in inhomogeneous continua using BIEM. International Journal of Solids and Structures, 41(14), 3905–3927.

    Article  MATH  Google Scholar 

  • Manolis, G. D., Rangelov, T. V., & Dineva, P. S. (2007). Free-field wave solutions in a half-plane exhibiting a special-type of continuous inhomogeneity. Wave Motion, 44, 304–321.

    Article  MathSciNet  MATH  Google Scholar 

  • Manolis, G. D., Rangelov, T. V., & Dineva, P. S. (2009). Free-field dynamic response of un inhomogeneous half-planes. Archive of Applied Mechanics, 79, 595–603.

    Article  MATH  Google Scholar 

  • Manolis, G. D., Dineva, P. S., & Rangelov, T. V. (2012). Dynamic fracture analysis of a smoothly inhomogeneous plane containing defects by BEM. Engineering Analysis with Boundary Elements, 36, 727–737.

    Article  MathSciNet  Google Scholar 

  • Manoogian, M. (2000). Scattering and diffraction of SH-waves above an arbitrarily shaped tunne. ISET Journal of Earthquake Technology, 37(1–3), 11–26.

    Google Scholar 

  • Mansur, W. J., & Brebbia, C. A. (1982a). Formulation of the boundary element method for transient problems governed by the scalar wave equation. Applied Mathematical Modelling, 6, 307–311.

    Article  MATH  Google Scholar 

  • Mansur, W. J., & Brebbia, C. A. (1982b). Numerical implementation of the boundary element method for transient problems governed by the scalar wave equation. Applied Mathematical Modelling, 6, 299–306.

    Article  MATH  Google Scholar 

  • Mansur, W. J., & Lima-Silva, W. D. (1992). Efficient time truncation in two-dimensional BEM analysis of transient wave propagation problems. Earthquake Engineering and Structural Dynamics, 21, 51–63.

    Article  Google Scholar 

  • Maruyama, T. (1963). On the force equivalents of dynamical elastic dislocations with reference to the earthquake mechanism. Bulletin of the Earthquake Research Institute (Tokyo), 41, 467–486.

    Google Scholar 

  • Meguid, S. A., & Wang, X. D. (1995). The dynamic interaction of a crack with a circular hole under anti-plane loading. Journal of the Mechanics and Physics of Solids, 43(12), 1857–1874.

    Article  MathSciNet  MATH  Google Scholar 

  • Mikhailov, S. E. (2002). Localized boundary-domain integral formulations for problems with variable coefficients. Engineering Analysis with Boundary Elements, 26, 681–690.

    Article  MATH  Google Scholar 

  • Mindlin, R. D. (1936). Force at a point in the interior of a semoinfinite solid. Journal of Applied Physics, 7, 195–202.

    MATH  Google Scholar 

  • Mogilevskaya, S. G., & Crouch, S. L. (2001). A Galerkin boundary integral method for multiple circular elastic inclusions. International Journal for Numerical Methods in Engineering, 52, 1069–1106.

    Article  MATH  Google Scholar 

  • Mogilevskaya, S. G., & Crouch, S. L. (2002). A Galerkin boundary integral method for multiple circular elastic inclusions with homogeneously imperfect interfaces. International Journal of Solids and Structures, 39(18), 4723–4746.

    Article  MATH  Google Scholar 

  • Morochnik, V., & Bardet, J. P. (1996). Viscoelastic approximation of poroelastic media for wave scattering problems. Soil Dynamics and Earthquake Engineering, 15(5), 337–346.

    Article  Google Scholar 

  • Morse, P. M., & Feshbach, H. (1953). Methods of Theoretical Physics. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Mukhopadhyay, N. K., Maiti, S. K., & Kakodkar, A. (2000). A review of SIF evaluation and modeling of singularities in BEM. Computational Mechanics, 25, 358–375.

    Article  MATH  Google Scholar 

  • Nakagawa, K., & Kitahara, M. (1986). Innovative numerical methods in engineering. In R. P. Shaw, J. Periauy, A. Chaudouet, J. Wu, C. Marino, & C. A. Brebbia (Eds.), Proceedings of the 4th international symposium (pp. 367–377). Georgia Institute of Technology.

    Google Scholar 

  • Nishimura, N., Yoshida, K., & Kobayashi, S. (1999). A fast multipole boundary integral equation method for crack problems in 3 D. Engineering Analysis with Boundary Elements, 23, 97–105.

    Article  MATH  Google Scholar 

  • Niu, Y., & Dravinski, M. (2003a). Direct 3 D BEM for scattering of elastic waves in a homogeneous anisotropic half-space. Wave Motion, 38, 165–175.

    Article  MATH  Google Scholar 

  • Niu, Y., & Dravinski, M. (2003b). Three-dimensional BEM for scattering of elastic waves in general anisotropic media. International Journal for Numerical Methods in Engineering, 58(7), 979–998.

    Article  MATH  Google Scholar 

  • Niwa, Y., Kobayashi, S., & Azuma, N. (1975a). An analysis of transient stresses produced around cavities of arbitraryshape during the passage of travelling waves. Memoirs of the Faculty of Engineering, Kyoto University, 37(2), 28–46.

    Google Scholar 

  • Niwa, Y., Fukui, T., Kato, S., & Fujiki, K. (1975b). An application of the integral equation method to two-dimensional elastodynamics. Theoretical and Applied Mechanics, 28, 281–290.

    Google Scholar 

  • Niwa, Y., Kobayashi, S., & Fukui, T. (1976). Applications of integral equation methods to some geomechanical problems. In C. S. Desai (Ed.), Numerical Methods in Geomechanics (pp. 120–131).

    Google Scholar 

  • Niwa, Y., Hirose, S., & Kitahara, M. (1986). Application of the boundary integral equation method to transient response analysis of inclusions in a half-space. Wave Motion, 8, 77–91.

    Article  MATH  Google Scholar 

  • Nolet, G., Sleeman, R., Nijhof, V., & Kennett, B. L. N. (1989). Synthetic reflection seismograms in three dimensions by a locked mode approximation. Geophysics, 54, 1334–1340.

    Article  Google Scholar 

  • Norris, A. N. (1985). Radiation from a point source and scattering theory in a fluid-saturated porous solid. Journal of the Acoustical Society of America, 77, 2012–2023.

    Article  MATH  Google Scholar 

  • Ohutsu, M., & Uesugi, S. (1985). Analysis of SH wave scattering in a half-space and its applications to seismic responses of geological structures. Engineering Analysis, 2(4), 198–204.

    Article  Google Scholar 

  • Ortiz-Aleman, C., Sanchez-Sesma, F. J., Rodriguez-Zuniga, J. L., & Luzon, F. (1998). Computing topograpfical 3- D site effects using a fast IBEM/Conjugate Gradient approach. Bulletin of the Seismological Society of America, 88, 393–399.

    Google Scholar 

  • Pais, A. L. 1988. Dynamic coupling of multiple structures through soil. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  • Pak, R. Y. S., & Guzina, B. (2002). Three-dimensional Green’s functions for a multilayered half-space in displacement potentials. Journal of Engineering Mechanics, 128, 449–461.

    Article  Google Scholar 

  • Pan, E. (1997). A general boundary element analysis of 2 D linear elasticfracture mechanics. International Journal of Fracture, 81(1), 41–59.

    Article  Google Scholar 

  • Pan, E., & Amadei, B. (1996). Fracture mechanics analysis of cracked 2- D anisotropic media with a new formulation of the BEM. International Journal of Fracture, 77, 161–174.

    Article  Google Scholar 

  • Pan, E., & Amadei, B. (1999). Boundary element analysis of fracture mechanics in anisotropic bimaterials. Engineering Analysis with Boundary Elements, 23, 683–691.

    Article  MATH  Google Scholar 

  • Pan, E., & Maier, G. (1997). A symmetric boundary integral approach to transient poroelastic analysis. Computational Mechanics, 19, 169–178.

    Article  MATH  Google Scholar 

  • Pan, E., Yang, B., Cai, G., & Yuan, F. G. (2001). Stress analyses around holes in composite laminates using boundary element method. Engineering Analysis with Boundary Elements, 25, 31–40.

    Article  MATH  Google Scholar 

  • Panza, G. F., Paskaleva, I., Dineva, P., & LaMura, C. (2009). Earthquake site effects modeling by hybrid MS- BIEM: the case study of Sofia Bulgaria. Rendiconti Scienze Fisiche, Accademia dei Lincei, 20, 91–116.

    Article  MATH  Google Scholar 

  • Pao, Y. H., & Gajewski, R. R. (1977). The generalized ray theory and transient responses of layered elastic solids. Physical Acoustics, 13, 183–265.

    Article  Google Scholar 

  • Pao, Y. H., & Mow, C. C. (1971). Diffraction of elastic waves and dynamic stress concentration. New York: Crane Russak.

    Google Scholar 

  • Papageorgiou, A. S., & Pei, D. A. (1998). A discrete wavenumber boundary element method for study of the 3- D response of 2- D scatterers. Earthquake Engineering and Structural Dynamics, 27, 619–638.

    Article  Google Scholar 

  • Parvanova, S. L., Dineva, P. S., & Manolis, G. D. (2013). Dynamic behavior of a finite-sized elastic solid with multiple cavities and inclusions using BIEM. Acta Mechanica, 224(3), 597–618.

    Article  MathSciNet  MATH  Google Scholar 

  • Parvanova, S. L., Dineva, P. S., Manolis, G. D., & Kochev, P. N. (2014a). Anti-plane wave motion in a finite solid with inclusions or cavities via BEM. Computers and Structures, 139, 65–83.

    Article  Google Scholar 

  • Parvanova, S. L., Dineva, P. S., & Manolis, G. D. (2014b). Elastic wave field in a half-plane with free surface relief, tunnels and multiple buried inclusions. Acta Mechanica, 225(7), 1843–1845.

    Article  MathSciNet  MATH  Google Scholar 

  • Parvanova, S. L., Dineva, P. S., Manolis, G. D., & Wuttke, F. (2014c). Seismic response of lined tunnels in the half-plane with surface topography. Bulletin of Earthquake Engineering, 12, 981–1005.

    Article  Google Scholar 

  • Pedersen, H. A., Sanchez-Sesma, F. J., & Campillo, M. (1994). Three-dimensional scattering by two-dimensional topographies. Bulletin of the Seismological Society of America, 84, 1169–1183.

    Google Scholar 

  • Portela, A., Aliabadi, M. H., & Rooke, D. P. (1992). The dual boundary element method: effective implementation for crack problems. International Journal for Numerical Methods in Engineering, 33, 1269–1287.

    Article  MATH  Google Scholar 

  • Providakis, C. P., Sotiropoulos, D. A., & Beskos, D. E. (1993). BEM analysis of reduced dynamic stress concentration by multiple holes. Communications in Numerical Methods in Engineering, 9, 917–924.

    Article  MATH  Google Scholar 

  • Rajapakse, R. K. N. D., & Wang, Y. (1991). Elastodynamic Green’s functions of orthotropic half plane. Journal of Engineering Mechanics ASCE, 117(3), 588–604.

    Article  Google Scholar 

  • Rangelov, T., Dineva, P., & Gross, D. (2003). A hypersingular traction boundary integral equation method for stress intensity factor computation in a finite cracked body. Engineering Analysis with Boundary Elements, 27, 9–21.

    Article  MATH  Google Scholar 

  • Rangelov, T. V., & Dineva, P. S. (2005). Steady-state plane wave propagation in inhomogeneous 3 D media. Journal of Theoretical and Applied Mechanics, 35, 17–38.

    MathSciNet  MATH  Google Scholar 

  • Rangelov, T. V., & Manolis, G. D. (2010). Time-harmonic elastodynamic Green’s function for the half-plane modeled by a restricted inhomogeneity of quadratic type. Journal of Mechanics of Materials and Structures, 5(6), 909–924.

    Article  Google Scholar 

  • Rangelov, T. V., & Manolis, G. D. (2014). Point force and dipole solutions in the inhomogeneous half-plane under time-harmonic conditions. Mechanics Research Communications, 56, 90–97.

    Article  Google Scholar 

  • Rangelov, T. V., Manolis, G. D., & Dineva, P. S. (2005). Elastodynamic fundamental solutions for certain families of 2 D inhomogeneous anisotropic domains: basic derivation. European Journal of Mechanics - A/Solids, 24, 820–836.

    Article  MathSciNet  MATH  Google Scholar 

  • Rangelov, T. V., Manolis, G. D., & Dineva, P. S. (2010). Wave propagation in a restricted class of orthotropic inhomogeneous half-planes. Acta Mechanica, 210, 169–182.

    Article  MATH  Google Scholar 

  • Reddy, J. N., & Cheng, Z. Q. (2003). Frequency of functionally graded plates with three-dimensional asymptotic approach. Journal of Engineering Mechanics ASCE, 129(8), 896–900.

    Article  Google Scholar 

  • Reinoso, E. 1994. Boundary element modelling of scattering from topographical structures with applications to the M exico C ity valley. Ph.D. thesis, Wessex Institute of Technology, University of Portsmouth, Portsmouth, UK.

    Google Scholar 

  • Rizzo, F., Shippy, J., & Rezayat, M. (1985a). A Bondary integral equation method for radiation and scattering of elastic waves in three dimensions. International Journal for Numerical Methods in Engineering, 21, 115–129.

    Article  MATH  Google Scholar 

  • Rizzo, F., Shippy, J., & Rezayat, M. (1985b). A Bondary integral equation method for time–harmonic radiation and scattering in an elastic half–space. In T. A. Cruse, A. B. Pifko & H. Arman (Eds.), Advanced Topics in Boundary Element Analysis (pp. 83–90).

    Google Scholar 

  • Rodrguez-Castellanos, A., Luzon, F., & Sanchez-Sesma, F. J. (2005). Diffraction of seismic waves in an elastic, cracked half-plane using a boundary integral formulation. Soil Dynamics and Earthquake Engineering, 25, 827–837.

    Article  Google Scholar 

  • Rubio-Gonzalez, C., & Manzon, J. J. (1999). Response of finite cracks in orthotropic materials due to concentrated impact shear load. Journal of Applied Mechanics ASME, 66, 485–491.

    Article  Google Scholar 

  • Rus, G., & Gallego, R. (2005). Boundary integral equation for inclusion and cavity shape sensitivity in harmonic elastodynamics. Engineering Analysis with Boundary Elements, 29, 77–91.

    Article  MATH  Google Scholar 

  • Saez, A., & Dominguez, J. (1999). BEM analysis of wave scattering in transversely isotropic solids. International Journal for Numerical Methods in Engineering, 44, 1283–1300.

    Article  MATH  Google Scholar 

  • Saez, A., & Dominguez, J. (2000). Far-field dynamic Green’s functions for BEM in transversely isotropic solids. Wave Motion, 32(2), 113–123.

    Article  MATH  Google Scholar 

  • Saez, A., & Dominguez, J. (2001). Dynamic crack problems in three-dimensional transversely isotropic solids. Engineering Analysis with Boundary Elements, 25(3), 203–210.

    Article  MATH  Google Scholar 

  • Saez, A., Ariza, M. P., & Dominguez, J. (1999). Three-dimensional fracture analysis in transversely isotropic solids. Engineering Analysis with Boundary Elements, 20(4), 1283–1300.

    MATH  Google Scholar 

  • Sanchez-Sesma, F. J. (1983). Diffraction of elastic waves by three dimensional surface irregularities. Bulletin of the Seismological Society of America, 73, 1621–1636.

    Google Scholar 

  • Sanchez-Sesma, F. J., & Campillo, M. (1991). Diffraction of P, SV and Rayleigh waves by topographical features: a boundary integral formulation. Bulletin of the Seismological Society of America, 81, 2234–2253.

    Google Scholar 

  • Sanchez-Sesma, F. J., & Campillo, M. (1993). Topographic effects for incident P, SV and Rayleigh waves. Tectonophysics, 218(1–3), 113–125.

    Article  Google Scholar 

  • Sanchez-Sesma, F. J., Herrera, I., & Aviles, J. (1982). A boundary method for elastic wave diffraction: application to scattering waves by surface irregularities. Bulletin of the Seismological Society of America, 72, 473–490.

    Google Scholar 

  • Sanchez-Sesma, F. J., Bravo, M. A., & Herrera, I. (1985). Surface motion of topographical irregularities for incident P, SV and Rayleigh waves. Bulletin of the Seismological Society of America, 75, 263–269.

    Google Scholar 

  • Sanchez-Sesma, F. J., Ramos-Martinez, J., & Campillo, M. (1993). An indirect BEM applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh waves. Earthquake Engineering and Structural Dynamics, 22, 279–295.

    Article  Google Scholar 

  • Sanchez-Sesma, F. J., Madariaga, R., & Irikura, K. (2001). An approximate elastic 2- D Green’s function for a constant-gradient medium. Geophysical Journal International, 146, 237–248.

    Article  Google Scholar 

  • Santare, M. H., Thamburaj, P., & Gazonas, G. A. (2003). The use of graded finite elements in the study of elastic wave propagation in continuously nonhomogeneous materials. International Journal of Solids and Structures, 40, 5621–5634.

    Article  MATH  Google Scholar 

  • Schanz, M. (1999). A boundary element formulation in timedomain for viscoelastic solids. Communications in Numerical Methods in Engineering, 15, 799–809.

    Article  MathSciNet  MATH  Google Scholar 

  • Schanz, M. (2001a). Application of 3 D time-domain boundary element formulation to wave propagation in poroelastic solids. Engineering Analysis with Boundary Elements, 25, 363–376.

    Article  MATH  Google Scholar 

  • Schanz, M. (2001b). Wave propagation in viscoelastic and poroelastic continua: A boundary element approach (Vol. 2), Lecture Notes in Applied Mechanics. Berlin: Springer.

    Google Scholar 

  • Schanz, M. (2009). Poroelastodynamics: Linear models, analytical solutions and numerical methods. Applied Mechanics Reviews, 62(3), 1–15.

    Article  Google Scholar 

  • Schanz, M., & Antes, H. (1997). A new visco- and elastodynamic time domain boundary element formulation. Computational Mechanics, 20(5), 452–459.

    Article  MathSciNet  MATH  Google Scholar 

  • Schanz, M., & Diebels, S. (2003). A comparative study of Biots theory and the linear theory of porous media for wave propagation problems. Acta Mechanica, 161, 213–235.

    MATH  Google Scholar 

  • Schanz, M., & Pryl, D. (2004). Dynamic fundamental solutions for compressible and incompressible modeled poroelastic continua. International Journal of Solids and Structures, 41, 4047–4073.

    Article  MATH  Google Scholar 

  • Seyrafian, S., Gatmiri, B., & Nourzad, A. (2006). Green functions for a continuously nonhomogenous saturated media. Computational Methods in Engineering Science, 15(2), 115–125.

    Google Scholar 

  • Sih, G. C., Paris, P. C., & Irwin, G. R. (1965). On cracks in rectilinear anisotropic bodies. International Journal of Fracture, 1, 189–203.

    Google Scholar 

  • Sladek, J., & Sladek, V. (1986). Dynamic SIF studied by boundary integro-differential equations. International Journal for Numerical Methods in Engineering, 23, 919–928.

    Article  MATH  Google Scholar 

  • Sladek, J., & Sladek, V. (1987). A boundary integral equation method for dynamic crack problems. Engineering Fracture Mechanics, 27(3), 269–277.

    Article  MATH  Google Scholar 

  • Sladek, J., & Sladek, V. (2000). Nonsingular traction BIEs for crack problems in elastodynamics. Computational Mechanics, 25, 269–277.

    MathSciNet  MATH  Google Scholar 

  • Sladek, J., Sladek, V., & Balas, J. (1986). Boundary integral formulation of crack problems. ZAMM, 66, 83–94.

    Article  MATH  Google Scholar 

  • Sladek, J., Sladek, V., & Markechova, I. (1993). An advanced boundary elementmethod for elasticity problems in nonhomogeneous media. Acta Mechanica, 97, 71–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Sladek, J., Sladek, V., Mykhaskiv, V. V., & Stankevych, V. Z. (2003a). Application of mapping theory to boundary integral formulation of 3 D dynamic crack problems. Engineering Analysis with Boundary Elements, 27, 203–213.

    Article  MATH  Google Scholar 

  • Sladek, J., Sladek, V., & Zhang, C. (2003b). Dynamic response of a crack in a functionally graded material under anti-plane shear impact load. Key Engineering Materials, 251–252, 123–129.

    Article  Google Scholar 

  • Sladek, J., Sladek, V., & Zhang, C. (2005a). A meshless local boundary integral equation method for dynamic anti-plane shear crack problem in functionally graded materials. Engineering Analysis with Boundary Elements, 29, 334–342.

    Article  MATH  Google Scholar 

  • Sladek, J., Sladek, V., & Zhang, C. (2005b). Stress analysis in anisotropic functionally graded materials by the MLPG method. Engineering Analysis with Boundary Elements, 29, 597–609.

    Article  MATH  Google Scholar 

  • Sladek, J., Sladek, V., & Zhang, C. (2005c). The MLPG method for crack analysis in anisotropic functionally graded materials. SID, 1(2), 131–143.

    MATH  Google Scholar 

  • Sladek, J., Sladek, V., Zhang, C., & Schanz, M. (2006). Meshless Petrov–Galerkin method for continuously nonhomogeneous linear viscoelastic solids. Computational Mechanics, 37, 279–288.

    Article  MATH  Google Scholar 

  • Sladek, J., Sladek, V., Zhang, C., Solek, P., & Pan, E. (2007). Evaluation of fracture parameters in continuously nonhomogeneous piezoelectric solids. International Journal of Fracture, 145, 313–326.

    Article  MATH  Google Scholar 

  • Sladek, V., & Sladek, J. (1984). Transient elastodynamic three-dimensional problems in cracked bodies. Applied Mathematical Modelling, 8, 2–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Sollero, P., & Aliabadi, M. H. (1995). Anisotropic analysis of cracks in composite laminates using the dual boundary element method. Composite Structures, 31(3), 229–233.

    Article  Google Scholar 

  • Stokes, G. G. (1849). On the dynamical theory of diffraction. Transactions of the Cambridge Philosophical Society, 9, 1–62.

    Google Scholar 

  • Sun, Y. Z., Yang, S. S., & Wang, Y. B. (2003). A new formulation of boundary element method for cracked anisotropic bodies under anti-plane shear. Computer Methods in Applied Mechanics and Engineering, 192(22–24), 2633–2648.

    Article  MATH  Google Scholar 

  • Tadeu, A., & Antonio, J. (2001). 2.5 D Green‘s functions for elastodynamic problems in layered acoustic and elastic formations. Computer Modeling in Engineering and Sciences, 2, 477–496.

    MATH  Google Scholar 

  • Tan, A., Hirose, S., Zhang, C. H., & Wang, C. Y. (2005). A 2 D time-domain BEM for transient wave scattering analysis by a crack in anisotropic solids. Engineering Analysis with Boundary Elements, 29, 610–623.

    Article  MATH  Google Scholar 

  • Tan, C. L., Gao, Y. L., & Agagh, F. F. (1992). Anisotropic stress analysis of inclusion problems using the boundary integral equation method. The Journal of Strain Analysis for Engineering Design, 27, 67–76.

    Google Scholar 

  • Theodorakopoulos, D. D., & Beskos, D. E. (2006). Application of Biots poroelasticity to some soil dynamics problems in civil engineering. Soil Dynamics and Earthquake Engineering, 26, 666–679.

    Article  Google Scholar 

  • Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21, 93–98.

    MathSciNet  MATH  Google Scholar 

  • Todorowska, M. I., & Lee, V. W. (1991). Surface motion of shallow circular alluvial valleys for incident plane SH waves: analytical solution. Soil Dynamics and Earthquake Engineering, 10, 192–200.

    Article  Google Scholar 

  • Trifunac, M. D. (1971). Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves. Bulletin of the Seismological Society of America, 61, 1755–1770.

    Google Scholar 

  • Tyrtyshnikov, E. (1996). Mosaic- Skeleton Approximations. Calcolo, 33, 46–57.

    MathSciNet  MATH  Google Scholar 

  • Vardoulakis, I., & Vrettos, C. H. (1988). Dispersion law of Rayleigh type waves in a compressible Gibson half-space. International Journal for Numerical and Analytical Methods in Geomechanics, 12, 639–655.

    Article  MATH  Google Scholar 

  • Venturini, W. S. (1992). Alternative formulations of the boundary element method for potential and elastic zoned problems. Engineering Analysis with Boundary Elements, 9(3), 203–207.

    Article  MathSciNet  Google Scholar 

  • Volterra, V. (1894). Sur les vibrations des corps élastiques isotropes. Acta Mathematica, 18, 161–232.

    Article  MathSciNet  Google Scholar 

  • Vrettos, C. H. (1990). In-plane vibrations of soil deposits with variable shear modulus: I. Surface waves. International Journal for Numerical and Analytical Methods in Geomechanics, 14, 209–222.

    Article  MATH  Google Scholar 

  • Vrettos, C. H. (1991a). Forced anti-plane vibrations at the surface of an inhomogeneous half-space. Soil Dynamics and Earthquake Engineering, 10, 230–235.

    Article  Google Scholar 

  • Vrettos, C. H. (1991b). In-plane vibrations of soil deposits with variable shear modulus: II. Line load. International Journal for Numerical and Analytical Methods in Geomechanics, 14, 649–662.

    Article  MATH  Google Scholar 

  • Wang, C. Y., & Achenbach, J. D. (1994). Elastodynamic fundamental solutions for anisotropic solids. Geophysical Journal International, 118, 384–392.

    Article  Google Scholar 

  • Wang, C. Y., & Achenbach, J. D. (1995). Three-dimensional time-harmonic elastodynamic Green’s functions for anisotropic solids. Proceedings of the Royal Society of London A, 449, 441–458.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, C. Y., & Achenbach, J. D. (1996). Lambs problem for solids of general anisotropy. Wave Motion, 24(3), 227–242.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, C. Y., Achenbach, J. D., & Hirose, S. (1996). Two-dimensional time domain BEM for scattering of elastic waves in anisotropic solids. International Journal of Solids and Structures, 33, 3843–3864.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, G., & Liu, D. (2002). Scattering of SH-wave by multiple circular cavities in half space. Earthquake Engineering and Engineering Vibration, 1(1), 36–44.

    Article  Google Scholar 

  • Wang, J. H., Zhou, X. L., & Lu, J. F. (2005). Dynamic stress concentration around elliptic cavities in saturated poroelastic soil under harmonic plane waves. International Journal of Solids and Structures, 42, 4295–4310.

    Article  MATH  Google Scholar 

  • Watanabe, K. (1982). Transient response of an inhomogeneous elastic solid to an impulsive SH-source (Variable SH-wave velocity). Bulletin of the JSME, 25–201, 315–320.

    Article  Google Scholar 

  • Watanabe, K., & Payton, R. (2004). Green’s function and its non-wave nature for SH-wave in inhomogeneous elastic solid. International Journal of Engineering Science, 42, 2087–2106.

    Article  MathSciNet  MATH  Google Scholar 

  • Watanabe, K., & Payton, R. (2006). Green’s function for radially symmetric waves in inhomogeneous anisotropic solids. ZAAM, 86(8), 642–648.

    Article  MathSciNet  MATH  Google Scholar 

  • Watanabe, K., & Takeuchi, T. (2002). Green’s function for two–dimensional waves in a radially inhomogeneous elastic solid. In K. Watanabe & F. Ziegler (Eds.), IUTAM Symposium on Dynamics of Advanced Materials and Smart Structures (pp. 459–468).

    Google Scholar 

  • Wen, P. H., Aliabadi, M. H., & Rooke, D. P. (1968). Cracks in three dimensions: a dynamic dual boundary element analysis. Computer Methods in Applied Mechanics and Engineering, 167(1), 139–151.

    MATH  Google Scholar 

  • Wen, P. H., Aliabadi, M. H., & Rooke, D. P. (1999). Three-dimensional dynamic fracture analysis with the dual reciprocity method in Laplace domain. Engineering Analysis with Boundary Elements, 23(1), 51–58.

    Article  MATH  Google Scholar 

  • Wheeler, L. T., & Sternberg, E. (1968). Some theorems in classical elastodynamics. Archive for Rational Mechanics and Analysis, 31(1), 51–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Wong, H. L., & Jenings, P. C. (1975). Effect of canyon topographies on strong ground motion. Bulletin of the Seismological Society of America, 65, 1239–1257.

    Google Scholar 

  • Wunsche, M., Zhang, C. H., Kuna, M., Hirose, S., Sladek, J., & Sladek, V. (2009a). A hypersingular time-domain BEM for 2 D dynamic crack analysis in anisotropic solids. International Journal for Numerical Methods in Engineering, 78, 127–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Wunsche, M., Zhang, C. H., Sladek, J., Sladek, V., Hirose, S., & Kuna, M. (2009b). Transient dynamic analysis of interface cracks in layered anisotropic solids under impact loading. International Journal of Fracture, 157(1–2), 131–147.

    Article  MATH  Google Scholar 

  • Wuttke, F. 2005. Advanced site investigation by use of surface waves. Ph.D. thesis, Bauhaus University, Weimar.

    Google Scholar 

  • Wuttke, F., Dineva, P., & Schanz, T. (2011). Seismic wave propagation inlaterally inhomogeneous geologicalregion via a new hybrid approach. Journal of Sound and Vibration, 330, 664–684.

    Article  Google Scholar 

  • Xu, S. Q., & Kamiya, N. (1998). A formulation and solution for boundary element analysis of inhomogeneous nonlinear problem. Computational Mechanics, 22(5), 367–377.

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, Z., Kong, F., & Zheng, X. (2003). Simulation of 2 D elastic bodies with randomly distributed circular inclusions using the BEM. Engineering Analysis with Boundary Elements, 1(2), 270–282.

    MathSciNet  Google Scholar 

  • Yoshida, K., Nishimura, N., & Kobayashi, S. (2000). Analysis of three dimensionalscattering of elastic waves by crack with fast multipole boundary integral equation method. Journal of Applied Mechanics JSCE, 3, 143–150.

    Article  Google Scholar 

  • Yoshida, K., Nishimura, N., & Kobayashi, S. (2001). Application of fast multipole Galerkin boundary integral equation method to elastostatic crackproblems in 3 D. International Journal for Numerical Methods in Engineering, 50, 525–547.

    Article  MATH  Google Scholar 

  • Yu, M. C., & Dravinski, M. (2009). Scattering of plane harmonic P, SV or Rayleigh waves by a completely embedded corrugated cavity. Geophysical Journal International, 178(1), 479–487.

    Article  Google Scholar 

  • Yue, Z. Q., Xiao, H. T., & Tham, L. G. (2003). Boundary element analysis of crack problems in functionally graded materials. International Journal of Solids and Structures, 40, 3273–3291.

    Article  MATH  Google Scholar 

  • Zhang, C. (2000). Transient elastodynamic antiplane crack analysis of anisotropic solids. International Journal of Solids and Structures, 37, 6107–6130.

    Article  MATH  Google Scholar 

  • Zhang, C. (2002a). A 2- D time-domain BIEM for dynamic analysis of cracked orthotropic solids. Computer Modeling in Engineering and Sciences, 3, 381–398.

    MATH  Google Scholar 

  • Zhang, C. (2002b). A 2 D hypersingular time-domain traction BEM for transient elastodynamic crack analysis. Wave Motion, 35, 17–40.

    Article  MATH  Google Scholar 

  • Zhang, C., & Savidis, A. (2003). 3 D transient dynamic crack analysis by a novel time domain BEM. Computer Modeling in Engineering and Sciences, 4, 603–618.

    MathSciNet  Google Scholar 

  • Zhang, C., Sladek, J., & Sladek, V. (2003a). Effects of material gradients on transient dynamic mode- III stress intensity factors in a FGM. International Journal of Solids and Structures, 40, 5251–5270.

    Article  MATH  Google Scholar 

  • Zhang, C., Savidis, A., Savidis, G., & Zhu, H. (2003b). Transient dynamic analysis of a cracked functionally graded material by BIEM. Computational Materials Science, 26, 167–174.

    Article  Google Scholar 

  • Zhang, C., & Gross, D. (1998). On wave propagation in elastic solids with cracks. Southampton: Computational Mechanics Publications.

    MATH  Google Scholar 

  • Zhang, L., & Chopra, A. K. (1991). Three-dimensional analysis of spatially varying ground motion around a uniform canyon in a homogeneous half-space. Earthquake Engineering and Structural Dynamics, 20, 911–926.

    Article  Google Scholar 

  • Zienkiewicz, O. C., Kelly, D. W., & Bettess, P. (1977). The coupling of the finite element method and boundary solution problems. International Journal for Numerical Methods in Engineering, 11, 355–375.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. Manolis .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manolis, G.D., Dineva, P.S., Rangelov, T.V., Wuttke, F. (2017). State-of-the-Art for the BIEM. In: Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements. Solid Mechanics and Its Applications, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-319-45206-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45206-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45205-0

  • Online ISBN: 978-3-319-45206-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics