Skip to main content

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Natural attenuation (NA) is a widely used strategy for the risk-based management of groundwater contaminated with hydrocarbons. New process-based conceptual models highlight the spatial distribution of biodegradation processes in plumes, controlled by microbial activity, electron acceptor bioavailability, and aquifer properties, as a key control on NA performance. The plume fringe is identified as a critical interface for enhanced microbial activity and biodegradation of hydrocarbons in plumes. Mass transport and process heterogeneity in aquifers must be adequately resolved to ensure reliable estimates of hydrocarbon attenuation. The adoption of mass discharge as a performance measure and use of high-resolution multilevel monitoring devices is recommended to address these issues. These concepts are illustrated with a case study example. Stable isotope methods are important tools in NA assessments and, when combined with hydrochemical analyses, offer new possibilities to characterize contaminant sources, biodegradation pathways, redox processes, element cycling, the relative contribution of different attenuation processes, and quantify biodegradation of hydrocarbons in groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • AFCEE (Air Force Centre for Environmental Excellence) (1995) Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater, vol 1–2. AFCEE, Transfer Division, Brooks Air Force Base, San Antonio

    Google Scholar 

  • Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation. Process fundamentals and mathematical models. Wiley, Hoboken, p 614

    Google Scholar 

  • Anneser B, Einsiedl F, Meckenstock RU, Richters L, Frank Wisotzky F, Griebler C (2008) High-resolution monitoring of biogeochemical gradients in a tar oil-contaminated aquifer. Appl Geochem 23:1715–1730

    Article  CAS  Google Scholar 

  • API (American Petroleum Institute) (2003). Groundwater remediation strategies tool, Publication no. 4730, p 80

    Google Scholar 

  • ASTM (American Society for Testing and Materials) (1998) Standard guide for remediation of ground water by natural attenuation at petroleum release sites. ASTM Standard Guide, West Conshohocken. E1943-98

    Google Scholar 

  • Atteia O, Guillot C (2007) Factors controlling BTEX and chlorinated solvents plume length under natural attenuation conditions. J Contam Hydrol 90:81–104

    Article  CAS  PubMed  Google Scholar 

  • Baker K, Bottrell SH, Thornton SF, Peel K, Spence MJ (2012) Effect of contaminant concentration on in-situ bacterial sulphate reduction and methanogenesis in a phenol-contaminated aquifer. Appl Geochem 27:2010–2018

    Article  CAS  Google Scholar 

  • Banwart SA, Thornton SF (2003) The geochemistry and hydrology of groundwater bioremediation by natural attenuation. In: Head I, Singleton I (eds) Bioremediation: a critical review. Horizon Scientific Press, Wymondham, pp 93–138

    Google Scholar 

  • Banwart SA, Thornton SF (2010) Natural attenuation of hydrocarbons in groundwater. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Verlag, Berlin/Heidelberg, pp 2474–2486

    Google Scholar 

  • Barcelona MJ, Holm TR, Schock MR, George GK (1989) Spatial and temporal gradients in aquifer oxidation-reduction conditions. Water Resour Res 25:991–1003

    Article  CAS  Google Scholar 

  • Bauer RD, Maloszewski P, Zhang Y, Meckenstock RU, Griebler C (2008) Mixing-controlled biodegradation in a toluene plume – results from two-dimensional laboratory experiments. J Contam Hydrol 96:150–168

    Article  CAS  PubMed  Google Scholar 

  • Béland-Pelletier C, Fraser M, Barker J, Ptak T (2011) Estimating contaminant mass discharge: a field comparison of the multilevel point measurement and the integral pumping investigation approaches and their uncertainties. J Contam Hydrol 122:63–75

    Article  PubMed  Google Scholar 

  • Beyer C, Chen C, Gronewold J, Kolditz O, Bauer S (2007) Determination of first-order degradation rate constants from monitoring networks. Groundwater 45:774–785

    Article  CAS  Google Scholar 

  • Bockelmann A, Zamfirescu D, Ptak T, Grathwohl P, Teutsch G (2003) Quantification of mass fluxes and natural attenuation rates at an industrial site with a limited monitoring network: a case study. J Contam Hydrol 60:97–121

    Article  CAS  PubMed  Google Scholar 

  • Bombach P, Richnow HH, Kastner M, Fischer A (2010) Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 86:839–852

    Article  CAS  PubMed  Google Scholar 

  • Borden RC (1994) Natural bioremediation of hydrocarbon-contaminated ground water. In: Handbook of bioremediation. Lewis Publishers, Boca Raton, pp 177–199

    Google Scholar 

  • Borden RC, Daniel RA, LeBrun LE IV, Davis CW (1997) Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer. Water Resour Res 33:1105–1115

    Article  CAS  Google Scholar 

  • Buscheck TE Alcantar CM (1995) Regression techniques and analytical solution to demonstrate intrinsic bioremediation. Intrinsic bioremediation. RE Hinchee, JT Wilson D Downey. Columbus, Battelle Press, 109–116

    Google Scholar 

  • Buscheck T, O’Reilly K (1995) Protocol for monitoring intrinsic bioremediation in groundwater. Chevron Research and Technology Company, Health, Environment and Safety Group, Richmond,CA, p 20

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • CGER (Commission on Geosciences, Environment and Resources) (2000) Natural attenuation for groundwater remediation, chapter: 5 protocols for documenting natural attenuation. The National Academies Press, Washington, DC, pp 212–254

    Google Scholar 

  • Champs DR, Gulens J, Jackson RE (1979) Oxidation-reduction sequences in groundwater flow systems. Can J Earth Sci 16:319–337

    Google Scholar 

  • Chapelle FH (1993) Ground-water microbiology and geochemistry. Wiley, New York, pp 424

    Google Scholar 

  • Chapelle FH, Bradley PM, Lovley DR, O’Neill K, Landmeyer JE (2002) Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer. Groundwater 40:353–360

    Google Scholar 

  • Chapelle FH, Widdowson MA, Brauner JS, Mendez E, Casey CC (2003) Methodology for estimating times of remediation associated with monitored natural attenuation, U.S. Geological survey water-resources investigations report 03–4057, p 58

    Google Scholar 

  • CL:AIRE (2014) An illustrated handbook of LNAPL transport and fate in the subsurface. CL:AIRE, London. ISBN: 978-1-905046-24-9. Download www.claire.co.uk/LNAPL

  • Cozzarelli IB, Herman JS, Baedecker MJ, Fischer JM (1999) Geochemical heterogeneity of a gasoline-contaminated aquifer. J Contam Hydrol 40:261–284

    Article  CAS  Google Scholar 

  • Cozzarelli IB, Bekins BA, Baedecker MJ, Aiken GR, Eganhouse RP, Tuccillo ME (2001) Progression of natural attenuation processes at a crude-oil spill site: I. Geochemical evolution of the plume. J Contam Hydrol 53:369–385

    Article  CAS  PubMed  Google Scholar 

  • Davis GB, Barber C, Power TR, Thierrin J, Patterson BM, Rayner JL, Wu Q (1999) The variability and intrinsic remediation of a BTEX plume in anaerobic sulphate-rich groundwater. J Contam Hydrol 36:265–290

    Article  CAS  Google Scholar 

  • Eckert D, Kürzinger P, Bauer R, Griebler C, Cirpka OA (2015) Fringe-controlled biodegradation under dynamic conditions: quasi 2-D flow-through experiments and reactive-transport modeling. J Contam Hydrol 172:100–111

    Article  CAS  PubMed  Google Scholar 

  • Einarson MD, Cherry JA (2002) A new multilevel ground water monitoring system using multichannel tubing. Ground Water Monit Remediat 22:52–65

    Article  CAS  Google Scholar 

  • Elliott DR, Scholes JD, Thornton SF, Rizoulis A, Banwart SA, Rolfe SA (2010) Dynamic changes in microbial community structure and function in phenol-degrading microcosms from a contaminated aquifer. FEMS Microbiol Ecol 71:247–259

    Article  CAS  PubMed  Google Scholar 

  • Elsner M, Imfeld G (2016) Compound-specific isotope analysis (CSIA) of micropollutants in the environment – current developments and future challenges. Curr Opin Biotechnol 41:60–72

    Article  CAS  PubMed  Google Scholar 

  • Environment Agency (1999). Natural attenuation of petroleum hydrocarbons and chlorinated solvents in groundwater, R&D technical report P305. p 135. ISBN: 1857051394

    Google Scholar 

  • Environment Agency (2000) Guidance on the assessment and monitoring of monitored natural attenuation of contaminants in groundwater, R&D publication, vol 95. Environment Agency, Bristol

    Google Scholar 

  • Environment Agency (2003) An illustrated handbook of DNAPL transport and fate in the subsurface. p 67. ISBN: 1844320669

    Google Scholar 

  • Environment Agency (2006) Remedial targets methodology: hydrogeological risk assessment for land contamination. GEHO0706BLEQ-E-E, p 129

    Google Scholar 

  • Feisthauer S, Seidel M, Bombach P, Traube S, Knöller K, Wange M, Fachmann S, Richnow HH (2012) Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods. J Contam Hydrol 133:17–29

    Article  CAS  PubMed  Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Upper Saddle River, p 615. ISBN: 0-13-088239-9

    Google Scholar 

  • Fischer A, Theuerkorn K, Stelzer N, Gehre M, Thullner M, Richnow HH (2007) Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX-contaminated aquifer. Environ Sci Technol 41:3689–3696

    Google Scholar 

  • Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SAB, Stams AJM, Scholmann M, Richnow H-H, Vogt C (2008) Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ Sci Technol 42:4356–4363

    Article  CAS  PubMed  Google Scholar 

  • Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Neri M, Ham PAS, Schotting RJ, Lerner DN (2009) Analytical modelling of fringe and core biodegradation in groundwater plumes. J Contam Hydrol 107:1–9

    Article  CAS  PubMed  Google Scholar 

  • Harayama S, Timmis KN (1992) Aerobic biodegradation of aromatic hydrocarbons. In: Sigel H, Sigel A (eds) Metal ions in biological systems. Vol. 28: degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker, New York, pp 99–155

    Google Scholar 

  • Haritash, A.K. and C.P. Kaushik, C.P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater, 169, 1–15.

    Google Scholar 

  • Hatfield K, Annable M, Chob J, Rao PSC, Klammler H (2004) A direct passive method for measuring water and contaminant fluxes in porous media. J Contam Hydrol 75:155–181

    Article  CAS  PubMed  Google Scholar 

  • Heron G, Christensen TH, Tjell JC (1994) Oxidation capacity of aquifer sediments. Environ Sci Technol 28:153–158

    Article  CAS  PubMed  Google Scholar 

  • Höhener P, Aelion CM (2010) Fundamentals of environmental isotopes and their use in biodegradation. In: Aelion CM et al (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton, pp 3–22

    Google Scholar 

  • Hunkeler D, Aravena R (2010) Investigating the origin and fate of organic contaminants in groundwater using stable isotope analysis. In: Aelion CM et al (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton, pp 249–292

    Google Scholar 

  • Hunkeler D, Elsner M (2010) Principles and mechanisms of isotope fractionation. In: Aelion CM et al (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton, pp 43–78

    Google Scholar 

  • Hunkeler D, Anderson N, Aravena R, Bernasconi SM, Butler BJ (2001) Hydrogen and carbon isotope fractionation during aerobic biodegradation of benzene. Environ Sci Technol 35:3462–3467

    Article  CAS  PubMed  Google Scholar 

  • ITRC (2010) Use and measurement of mass flux and mass discharge. Interstate Technology & Regulatory Council, Integrated DNAPL Site Strategy Team, Washington, DC, p 154. www.itrcweb.org

  • Jankowski J, Beck P, Acworth RI (1997) Vertical heterogeneity in the Botany Sands aquifer, Sydney, Australia: implications for chemical variations and contaminant delineation. Groundwater in the urban environment: problems, processes and management. Balkema, Rotterdam, pp 445–450

    Google Scholar 

  • Kao CM, Wang YS (2001) Field investigation of natural attenuation and intrinsic biodegradation rates at an underground storage tank site. Environ Geol 40:622–631

    Article  CAS  Google Scholar 

  • Khan M, Zaidi A, Goel R, Musarrat J, (2011) Biomanagement of metal-contaminated soils, Environmental pollution, vol 20. Springer, Dordrecht. ISBN: 978-94-007-1913-2

    Google Scholar 

  • Kümmel S, Herbst FA, Bahr A, Duarte M, Pieper DH, Jehmlich N, Seifert J, von Bergen M, Bombach P, Richnow HH, Vogt C (2015) Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiol Ecol 91. doi: 10.1093/femsec/fiv006

    Google Scholar 

  • Lee JY, Cheon JY, Lee KK, Lee SK, Lee MH (2001) Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer. J Contam Hydrol 50:139–158

    Article  CAS  PubMed  Google Scholar 

  • Lerner DN, Thornton SF, Spence MJ, Banwart SA, Bottrell SH, Higgo JJ, Mallinson HEH, Pickup RW, Williams GM (2000) Ineffective natural attenuation of degradable organic compounds in a phenol-contaminated aquifer. Ground Water 38:922–928

    Article  CAS  Google Scholar 

  • Lesser-Carillo LE (2014) 13C/12C isotope fractionation during aerobic and anaerobic biodegradation of naphthalene. Int J Geosci 5:206–213

    Article  Google Scholar 

  • Lyngkilde J, Christensen TH (1992) Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark). J Contam Hydrol 10:291–307

    Article  CAS  Google Scholar 

  • Mackay DM, Wilson RD, Scow KS, Einarson MD, Fowler B, Wood IA (2001) In situ remediation of MTBE at Vandenberg Air Force Base, California. Contam Soil Sediment Water Spring pp 43–46

    Google Scholar 

  • Mancini SA, Lacrampe-Couloume G, Jonker H, van Breukelen BM, Groen J, Volkering F, Sherwood Lollar B (2002) Hydrogen isotopic enrichment: an indicator of biodegradation at a petroleum hydrocarbon contaminated field site. Environ Sci Technol 36:2464–2470

    Article  CAS  PubMed  Google Scholar 

  • Mancini SA, Ulrich AC, Lacrampe-Couloume G, Sleep B, Edwards EA, Sherwood Lollar B (2003) Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl Environ Microbiol 69:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Hayden JM, Robbins GA (1997) Plume distortion and apparent attenuation due to concentration averaging in monitoring wells. Ground Water 35:339–346

    Article  CAS  Google Scholar 

  • McGuire JT, Smith EW, Long DT, Hyndman DW, Haack SK, Klug MJ, Velbel MA (2000) Temporal variations in parameters reflecting terminal-electron accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents. Chem Geol 169:471–485

    Article  CAS  Google Scholar 

  • McLaughlan RG, Merrick NP, Davis GB (2006) Natural attenuation: a scoping review. CRC for Contamination Assessment and Remediation of the Environment technical report no. 3. p 73

    Google Scholar 

  • McMahon PB, Bruce BW (1997) Distribution of terminal electron-accepting processes in an aquifer having multiple contaminant sources. Appl Geochem 12:507–516

    Article  CAS  Google Scholar 

  • Meckenstock RU, Morasch B, Griebler C, Richnow H-H (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75:215–255

    Article  CAS  PubMed  Google Scholar 

  • Morasch B, Richnow HH, Schink B, Meckenstock R (2001) Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: mechanistic and environmental aspects. Appl Environ Microbiol 67:4842–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan CN, Yong RN (2004) Natural attenuation of contaminated soils. Environ Int 30:587–601

    Article  CAS  PubMed  Google Scholar 

  • National Academy of Sciences (2000) Natural attenuation for groundwater remediation. Committee on ground water clean-up alternatives. National Research Council, National Academy Press, Washington, DC

    Google Scholar 

  • Pickup RW, Rhodes G, Alamillo ML, Mallinson HEH, Thornton SF, Lerner DN (2001) Microbiological analysis of multilevel borehole samples from a contaminated groundwater system. J Contam Hydrol 53:269–284

    Article  CAS  PubMed  Google Scholar 

  • Prommer H, Anneser B, Rolle M, Insiedl F, Griebler C (2009) Biogeochemical and isotopic gradients in a BTEX/PAH contaminant plume: model-based interpretation of a high-resolution field data set. Environ Sci Technol 43:8206–8282

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Jose SC, Nowak W, Cirpka OA (2005) Experiments on vertical transverse mixing in a large-scale heterogeneous model aquifer. J Contam Hydrol 80:130–148

    Article  CAS  PubMed  Google Scholar 

  • Reinhard M (1994) In-situ bioremediation technologies for petroleum-derived hydrocarbons based on alternate electron acceptors (other than molecular oxygen). Handbook of bioremediation. Lewis Publishers, Boca Raton, Florida, pp 131–147

    Google Scholar 

  • Richnow HH, Annweiler E, Michaelis W, Meckenstock RU (2003) Microbial degradation of aromatic hydrocarbons in a contaminated aquifer monitored by 13C/12C isotope fractionation. J Contam Hydrol 64:59–72

    Article  CAS  PubMed  Google Scholar 

  • Rivett MO, Thornton SF (2008) Monitored natural attenuation of organic contaminants in groundwater: principles and application. Water Manag J 161:381–392

    Google Scholar 

  • Rizoulis A, Elliott DR, Rolfe SA, Thornton SF, Banwart SA, Pickup RW, Scholes JS (2013) Diversity of planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Microb Ecol 66:84–95

    Article  CAS  PubMed  Google Scholar 

  • RTDF (1997) Natural attenuation of chlorinated solvents in groundwater: principles and practices. Version 3.0. August. Remediation Technologies Development Forum

    Google Scholar 

  • Rügner H, Finkel M, Kaschl A, Bittens M (2006) Application of monitored natural attenuation in contaminated land management – a review and recommended approach for Europe. Environ Sci Pol 9:568–576

    Article  Google Scholar 

  • Schreiber ME, Bahr JM (1999) Spatial electron acceptor variability: implications for assessing bioremediation potential. Biorem J 3:363–378

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley-Interscience, New York, p 1327. ISBN: 0-47 1-35750-2

    Google Scholar 

  • Smith MR (1991) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206

    Article  Google Scholar 

  • Spence MJ, Bottrell S, Thornton SF, Lerner DN (2001) Isotopic modelling of the significance of sulphate reduction for phenol attenuation in a polluted aquifer. J Contam Hydrol 53:285–304

    Article  CAS  PubMed  Google Scholar 

  • Spence MJ, Bottrell SH, Thornton SF, Richnow H, Spence KH (2005) Hydrochemical and isotopic effects associated with fuel biodegradation pathways in a chalk aquifer. J Contam Hydrol 79:67–88

    Article  CAS  PubMed  Google Scholar 

  • Suarez MP, Rifai HS (1999) Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. Biorem J 3:337–362

    Article  CAS  Google Scholar 

  • Thornton SF, Quigley S, Spence M, Banwart SA, Bottrell S, Lerner DN (2001a) Processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer. J Contam Hydrol 53:233–267

    Article  CAS  PubMed  Google Scholar 

  • Thornton SF, Lerner DN, Banwart SA (2001b) Assessing the natural attenuation of organic contaminants in aquifers using plume-scale electron and carbon balances: model development with analysis of uncertainty and parameter sensitivity. J Contam Hydrol 53:199–232

    Article  CAS  PubMed  Google Scholar 

  • Thornton SF, Bottrell SH, Spence KS, Pickup R, Spence MJ, Shah N, Mallinson HEHM, Richnow HH (2011) Assessment of MTBE biodegradation in contaminated groundwater using 13C and 14C analysis: field and laboratory microcosm studies. Appl Geochem 26:828–837

    Article  CAS  Google Scholar 

  • Thornton SF, Tobin K, Smith JWH (2013) Comparison of constant and transient-source zones on simulated contaminant plume evolution in groundwater: implications for hydrogeological risk assessment. Ground Water Monit Remediat 33:78–91

    CAS  Google Scholar 

  • Thornton SF, Baker KM, Bottrell SH, Rolfe SA, McNamee P, Forrest F, Duffield P, Wilson RD, Fairburn AW, Cieslak L (2014) Enhancement of in situ biodegradation of organic compounds in groundwater by targeted pump and treat intervention. Appl Geochem 48:28–40

    Article  CAS  Google Scholar 

  • Tischer K, Kleinsteuber S, Schleinitz KM, Fetzer I, Spott O, Stange F, Lohse U, Franz J, Neumann F, Gerling S, Schmidt C, Hasselwander E, Harms H, Wendeberg A (2013) Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer. Environ Microbiol 15:2603–2615

    Article  CAS  PubMed  Google Scholar 

  • Tuxen N, Albrechtsen HJ, Bjerg PL (2006) Identification of a reactive degradation zone at a landfill leachate plume fringe using high resolution sampling and incubation techniques. J Contam Hydrol 85:179–194

    Article  CAS  PubMed  Google Scholar 

  • U.S. EPA (1998a) EPA policy on use of monitored natural attenuation for site remediation. Seminars on monitored natural attenuation for ground water, 1–3 to 1–6. U.S. EPA/625/K-98/001

    Google Scholar 

  • U.S. EPA (1998b) Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water. Office of Research and Development, Washington, DC, p 248

    Google Scholar 

  • U.S. EPA (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites. U.S. EPA Office of Solid Waste and Emergency Response Directive 9200.4-17P, p 32

    Google Scholar 

  • U.S. EPA (2006) In situ and ex situ biodegradation technologies for remediation of contaminated sites. Engineering issue, solid waste and emergency response, EPA 625/R-06/015, p 22

    Google Scholar 

  • U.S. EPA (2007a) Monitored natural attenuation of inorganic contaminants in ground water, vol 1. Technical basis for assessment. EPA/600/R-07/139

    Google Scholar 

  • U.S. EPA (2007b) Monitored natural attenuation of inorganic contaminants in ground water, vol 2. Assessment for non-radionuclides including arsenic, cadmium, chromium, copper, lead, nickel, nitrate, perchlorate, and selenium. EPA/600/R-07/140, p 124

    Google Scholar 

  • Watson IA, Oswald SE, Banwart SA, Crouch RS, Thornton SF (2005) Modeling the dynamics of fermentation and respiratory processes in a groundwater plume of phenolic contaminants interpreted from laboratory-to field-scale. Environ Sci Technol 39:8829–8839

    Article  CAS  PubMed  Google Scholar 

  • Wiedemeier T, Wilson JT, Kampbell DH, Miller RN, Hansen JE (1995) Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater. Air Force Center for Environmental Excellence – Technology Transfer Division, San Antonio

    Google Scholar 

  • Wiedemeier TH, Rifai HS, Newell CJ, Wilson JT (1999) Natural attenuation of fuels and chlorinated solvents in the subsurface. Wiley, New York. ISBN: 0 471 19749 1

    Google Scholar 

  • Wiedemeier TH, Barden MJ, Haas PE, Dickson WZ (2006) Designing monitoring programs to effectively evaluate the performance of natural attenuation. In: Nielsen DM (ed) Practical handbook of environmental site characterization and groundwater monitoring, 2nd edn. CRC Taylor and Francis, Boca Raton, pp 574–634

    Google Scholar 

  • Williams GM, Pickup RW, Thornton SF, Lerner DN, Mallinson HEH, Moore Y, White C (2001) Biogeochemical characterisation of a coal-tar distillate plume. J Contam Hydrol 53:175–198

    Article  CAS  PubMed  Google Scholar 

  • Wilson RD, Mackay DM, Scow KM (2002) In situ MTBE biodegradation supported by diffusive oxygen release. Environ Sci Technol 36:190–199

    Article  CAS  PubMed  Google Scholar 

  • Wilson RD, Thornton SF, Mackay DM (2004) Challenges in monitoring the natural attenuation of spatially variable plumes. Biodegradation 15:359–369

    Article  PubMed  Google Scholar 

  • Wu Y, Lerner DN, Banwart SA, Thornton SF, Pickup RW (2006) Persistence of fermentative process to phenolic toxicity in ground water. J Environ Qual 35:2021–2025

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven F Thornton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Thornton, S.F. (2017). Natural Attenuation of Hydrocarbon Compounds in Groundwater. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-44535-9_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44535-9_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44535-9

  • Online ISBN: 978-3-319-44535-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics