Skip to main content

Abstract

When Pseudomonas putida mt-2 cells face aromatic hydrocarbons, they must make a number of decisions that exemplify virtually every challenge that environmental bacteria need to overcome for thriving in polluted sites. It is thus no surprise that the genome-wide responses of P. putida to a variety conditions have been studied in considerable detail. One long-standing issue is how P. putida handles nutrient choice when a mixture of substrates coexist in the same site. A complex mechanism reminiscent of catabolite repression is in place to ensure that hydrocarbons are tackled only after virtually all other easy nutrients are depleted. Once this occurs, typical components of the lighter aromatic fractions of petroleum (e.g., toluene and xylenes) are not only potential nutrients but also strong stressors for P. putida. For handling this scenario, simultaneous processing of their presence both as an edible carbon source to benefit from and as a detrimental hassle to keep at bay becomes necessary. A second issue is the metabolic jam caused by the coincident presence in the same cells of competing pathways for ortho-cleavage and meta-cleavage of the intermediate catechols that degradation of aromatics must necessarily go through. Availability of a suite of genomic, proteomic and reporter technologies has shed light on these questions and exposed a number of surprising solutions that would otherwise look like intractable biochemical and regulatory problems. These include not only specific biochemical and transcriptional devices that overcome intracellular conflicts but also diversification of the population for acquiring different phenotypic roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Belda E, van Heck RG, Jose Lopez-Sanchez M, Cruveiller S, Barbe V, Fraser C et al (2016) The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 18:3403–3424

    Article  CAS  Google Scholar 

  • de Las Heras A, Fraile S, de Lorenzo V (2012) Increasing signal specificity of the TOL network of Pseudomonas putida mt-2 by rewiring the connectivity of the master regulator XylR. PLoS Genet 8:e1002963

    Article  Google Scholar 

  • de Lorenzo V, Loza-Tavera H (2011) Microbial bioremediation of chemical pollutants: how bacteria cope with multi-stress environmental scenarios. In: Bacterial stress responses, 2nd edn. American Society of Microbiology, Washington, DC, pp 481–492

    Chapter  Google Scholar 

  • de Lorenzo V, Sekowska A, Danchin A (2015) Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 39:96–119

    PubMed  Google Scholar 

  • Domínguez-Cuevas P, Marqués S (2017) Current view of the mechanisms controlling the transcription of the TOL plasmid aromatic degradation pathways. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids. Springer International Publishing, Cham, pp 1–22

    Google Scholar 

  • Dominguez-Cuevas P, Marin P, Ramos JL, Marques S (2005) RNA polymerase holoenzymes can share a single transcription start site for the pm promoter. Critical nucleotides in the −7 to −18 region are needed to select between RNA polymerase with σ38 or σ32. J Biol Chem 280:41315–41323

    Article  CAS  Google Scholar 

  • Dominguez-Cuevas P, Gonzalez-Pastor JE, Marques S, Ramos JL, de Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991

    Article  CAS  Google Scholar 

  • dos Santos VA, Heim S, Moore ER, Stratz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286

    Article  CAS  Google Scholar 

  • Jimenez JI, Perez-Pantoja D, Chavarria M, Diaz E, de Lorenzo V (2014) A second chromosomal copy of the catA gene endows Pseudomonas putida mt-2 with an enzymatic safety valve for excess of catechol. Environ Microbiol 16:1767–1778

    Article  CAS  Google Scholar 

  • Kim J, Perez-Pantoja D, Silva-Rocha R, Oliveros JC, de Lorenzo V (2016) High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Environ Microbiol 18:3327–3341

    Article  CAS  Google Scholar 

  • Marques S, Manzanera M, Gonzalez-Perez MM, Gallegos MT, Ramos JL (1999) The XylS-dependent Pm promoter is transcribed in vivo by RNA polymerase with sigma 32 or sigma 38 depending on the growth phase. Mol Microbiol 31:1105–1113

    Article  CAS  Google Scholar 

  • Nikel PI, Martinez-Garcia E, de Lorenzo V (2014a) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379

    Article  CAS  Google Scholar 

  • Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V (2014b) The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 16:628–642

    Article  CAS  Google Scholar 

  • Nikel PI, Chavarria M, Fuhrer T, Sauer U, de Lorenzo V (2015) Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem 290:25920–25932

    Article  CAS  Google Scholar 

  • Perez-Pantoja D, Kim J, Silva-Rocha R, de Lorenzo V (2015) The differential response of the Pben promoter of Pseudomonas putida mt-2 to BenR and XylS prevents metabolic conflicts in m-xylene biodegradation. Environ Microbiol 17:64–75

    Article  CAS  Google Scholar 

  • Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gomez-Garcia MR et al (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566

    Article  Google Scholar 

  • Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092

    Article  CAS  Google Scholar 

  • Silva-Rocha R, de Lorenzo V (2012a) Broadening the signal specificity of prokaryotic promoters by modifying cis-regulatory elements associated with a single transcription factor. Mol BioSyst 8:1950–1957

    Article  CAS  Google Scholar 

  • Silva-Rocha R, de Lorenzo V (2012b) Stochasticity of TOL plasmid catabolic promoters sets a bimodal expression regime in Pseudomonas putida mt-2 exposed to m-xylene. Mol Microbiol 86:199–211

    Article  CAS  Google Scholar 

  • Silva-Rocha R, de Lorenzo V (2014) The pWW0 plasmid imposes a stochastic expression regime to the chromosomal ortho pathway for benzoate metabolism in Pseudomonas putida. FEMS Microbiol Lett 356:176–183

    Article  CAS  Google Scholar 

  • Silva-Rocha R, Perez-Pantoja D, de Lorenzo V (2013) Decoding the genetic networks of environmental bacteria: regulatory moonlighting of the TOL system of Pseudomonas putida mt-2. ISME J 7:229–232

    Article  CAS  Google Scholar 

  • van Vliet S, Dal Co A, Winkler AR, Spriewald S, Stecher B, Ackermann M (2018) Spatially correlated gene expression in bacterial groups: the role of lineage history, spatial gradients, and cell-cell interactions. Cell Syst 6:496–507.e6

    Article  Google Scholar 

  • Velazquez F, Parro V, de Lorenzo V (2005) Inferring the genetic network of m-xylene metabolism through expression profiling of the xyl genes of Pseudomonas putida mt-2. Mol Microbiol 57:1557–1569

    Article  CAS  Google Scholar 

  • Velazquez F, de Lorenzo V, Valls M (2006) The m-xylene biodegradation capacity of Pseudomonas putida mt-2 is submitted to adaptation to abiotic stresses: evidence from expression profiling of xyl genes. Environ Microbiol 8:591–602

    Article  Google Scholar 

  • Yuste L, Hervas AB, Canosa I, Tobes R, Jimenez JI, Nogales J et al (2006) Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol 8:165–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are indebeted to Bastian Voegeli, Simon van Vliet, Colette Bigosch, and Martin Ackermann (EAWAG, Switzerland) for sharing the data shown in Fig. 3. Pablo Nikel is gratefully acknowledged for reading and commenting the manuscript. The work in VdL’s Laboratory was funded by the HELIOS Project of the Spanish Ministry of Science BIO 2015-66960-C3-2-R (MINECO/FEDER), the ARISYS (ERC-2012-ADG-322797), EmPowerPutida (EU-H2020-BIOTEC-2014-2015-6335536) and MADONNA (H2020-FET-OPEN-RIA-2017-1-766975) Contracts of the European Union, and the InGEMICS-CM (B2017/BMD-3691) contract of the Comunidad de Madrid (FSE, FECER). Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Lorenzo, V., Joshi, H. (2019). Genomic Responses of Pseudomonas putida to Aromatic Hydrocarbons. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-44535-9_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44535-9_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44535-9

  • Online ISBN: 978-3-319-44535-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics