Skip to main content

Microbiology of Oil- and Natural Gas-Producing Shale Formations: An Overview

  • Living reference work entry
  • First Online:
Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 247 Accesses

Abstract

Shales are the most abundant type of sedimentary rock on Earth. Many shale formations contain high concentrations of organic matter and can serve as both sources and reservoirs of oil and natural gas. Oil- and natural gas-producing shale formations are characterized by very low permeability and extremely small pore throat sizes, which have traditionally made it very difficult to extract economic volumes of hydrocarbons. Recent advances associated with horizontal drilling and hydraulic fracturing have led to increased exploration and extraction of oil and natural gas in shale formations throughout the world. This increased activity in shale formations has been accompanied by a variety of microbial-related issues including reservoir plugging, reservoir souring, sulfidogenesis, and corrosion. Even though it is clear that microorganisms cause a wide variety of deleterious processes in shales, very little is known about their origins in these formations. There are several plausible sources of microorganisms in shale, including the formation itself and the fluids that are used during the drilling and hydraulic fracturing processes. This chapter contains an overview of what is currently known about the microbiological properties of shale formations and the fluids that are used during the drilling and hydraulic fracturing processes. The chapter also contains a brief description of the research issues that need to be addressed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexander T et al (2011) Shale gas revolution. Oilfield Rev 23:40–55

    Google Scholar 

  • Arthur JD, Bohm B, Layne M Hydraulic fracturing considerations for natural gas wells of the Marcellus Shale. Ground Water Protection Council Annual Forum, 2008

    Google Scholar 

  • Badrul M, Chiou L, Azlina Z, Juliana Z (2007) Dolomite as an alternative weighting agent in drilling fluids. J Eng Sci Technol 2(2):164–176

    Google Scholar 

  • Benka-Coker M, Olumagin A (1996) Effects of waste drilling fluid on bacterial isolates from a mangrove swamp oilfield location in the Niger Delta of Nigeria. Bioresour Technol 55(3):175–179

    Article  CAS  Google Scholar 

  • Bentham RH, Broadbent CR (1995) Field trial of biocides for control of Legionella in cooling towers. Curr Microbiol 30(3):167–172

    Article  CAS  PubMed  Google Scholar 

  • Blauch ME, Myers RR, Moore T, Lipinski BA, Houston NA Marcellus shale post-frac flowback waters-where is all the salt coming from and what are the implications? SPE Eastern Regional Meeting, 2009

    Google Scholar 

  • Bowker KA (2003) Recent development of the Barnett Shale play, Fort Worth Basin. W Tex Geol Soc Bull 91:523–533

    Google Scholar 

  • Bowker KA (2007) Barnett Shale gas production, Fort Worth Basin: issues and discussion. AAPG Bull 91(4):523–533

    Article  Google Scholar 

  • Boyer C, Clark B, Jochen V, Lewis R, Miller CK (2011) Shale gas: a global resource. Oilfield Rev 23(3):28–39

    Google Scholar 

  • Bruner K, Smosna R (2011) A comparative study of the Mississippian Barnett shale, Fort Worth Basin, and Devonian Marcellus shale, Appalachin Basin, DOE/NETL-2011/1478. National Energy Technology Laboratory, Morgantown

    Google Scholar 

  • Burke CJ, Veil JA (1995) Synthetic-based drilling fluids have many environmental pluses. Oil Gas J 93(48):59–71

    CAS  Google Scholar 

  • Cook T, Perrin J (2016) Hydraulic fracturing accounts for about half of current U.S. crude oil production Today in Energy. U.S. Energy Information Administration, http://www.eia.gov/todayinenergy/detail.cfm?id=25372

  • Curtis JB (2002) Fractured shale-gas systems. AAPG Bull 86(11):1921–1938

    CAS  Google Scholar 

  • Darley HC, Gray GR (1988) Composition and properties of drilling and completion fluids. Gulf Professional Publishing, Houston

    Google Scholar 

  • Fichter J, Johnson K, French K, Oden R (2009) Biocides control Barnett Shale fracturing fluid contamination. Oil Gas J 107:38–44

    CAS  Google Scholar 

  • Foght J (2010) Microbial communities in oil shales, biodegraded and heavy oil reservoirs, and bitumen deposits. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2159–2172

    Chapter  Google Scholar 

  • Fredrickson J et al (1997) Pore-size constraints on the activity and survival of subsurface bacteria in a late cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiol J 14(3):183–202

    Article  Google Scholar 

  • Gaspar J et al (2014) Microbial dynamics and control in shale gas production. Environ Sci Technol Lett 1(12):465–473

    Article  CAS  Google Scholar 

  • Grassia GS, McLean KM, Glénat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21(1):47–58

    Article  CAS  Google Scholar 

  • Harrington A (2015) Cultivation-dependent analysis of microorganisms associated with various hydraulic fracturing fluids. University of Nevada Las Vegas Theses, Dissertations, Professional Papers, and Capstones. Paper 2479. Las Vegas

    Google Scholar 

  • Head I et al (2010) Hydrocarbon degradation in petroleum reservoirs. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3097–3109

    Chapter  Google Scholar 

  • Houston NA, Blauch ME, Weaver DR, Miller D, O’Hara D Fracture-stimulation in the Marcellus Shale-lessons learned in fluid selection and execution. SPE Eastern Regional Meeting, 2009

    Google Scholar 

  • Hu D, Xu S (2013) Opportunity, challenges and policy choices for China on the development of shale gas. Energ Policy 60:21–26

    Article  Google Scholar 

  • Jones D et al (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451(7175):176–180

    Article  CAS  PubMed  Google Scholar 

  • Kahrilas GA, Blotevogel J, Stewart PS, Borch T (2014) Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ Sci Technol 49(1):16–32

    Article  PubMed  Google Scholar 

  • Kermani M, Harrop D (1996) The impact of corrosion on oil and gas industry. SPE Prod Facil 11:186–189

    Article  CAS  Google Scholar 

  • Kerr RA (2010) Natural gas from shale bursts onto the scene. Science 328(5986):1624–1626

    Article  CAS  PubMed  Google Scholar 

  • Kleikemper J, Schroth MH, Sigler WV, Schmucki M, Bernasconi SM, Zeyer J (2002) Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol 68(4):1516–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumholz LR, McKinley JP, Ulrich F, Suflita JM (1997) Confined subsurface microbial communities in Cretaceous rock. Nature 386(6620):64–66

    Article  CAS  Google Scholar 

  • Liang R et al (2016) Metabolic capability of a predominant Halanaerobium sp. in hydraulically fractured gas wells and its implication in pipeline corrosion. Front Microbiol. doi:10.3389/fmicb.2016.00988

    Google Scholar 

  • Loucks RG, Ruppel SC (2007) Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull 91(4):579–601

    Article  CAS  Google Scholar 

  • Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 21–33

    Chapter  Google Scholar 

  • Martini A, Walter L, Budai J, Ku T, Kaiser C, Schoell M (1998) Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim Shale, Michigan Basin, USA. Geochim Cosmochim Acta 62(10):1699–1720

    Article  CAS  Google Scholar 

  • Martini AM, Walter LM, McIntosh JC (2008) Identification of microbial and thermogenic gas components from Upper Devonian black shale cores, Illinois and Michigan basins. AAPG Bull 92(3):327–339

    Article  CAS  Google Scholar 

  • Meckenstock RU et al (1999) 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ Microbiol 1(5):409–414

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J Contam Hydrol 75(3):215–255

    Article  CAS  PubMed  Google Scholar 

  • Mohan AM, Bibby KJ, Lipus D, Hammack RW, Gregory KB (2014) The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing. PLoS ONE 9:e107682. doi:10.1371/journal.pone.0107682

    Article  PubMed  PubMed Central  Google Scholar 

  • Murali Mohan A, Hartsock A, Bibby KJ, Hammack RW, Vidic RD, Gregory KB (2013) Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction. Environ Sci Technol 47(22):13141–13150

    Article  CAS  PubMed  Google Scholar 

  • Murtough S, Hiom S, Palmer M, Russell A (2001) Biocide rotation in the healthcare setting: is there a case for policy implementation? J Hosp Infect 48(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Murtough S, Hiom S, Palmer M, Russell A (2002) A survey of rotational use of biocides in hospital pharmacy aseptic units. J Hosp Infect 50(3):228–231

    Article  CAS  PubMed  Google Scholar 

  • Nweke C, Okpokwasili G (2003) Drilling fluid base oil biodegradation potential of a soil Staphylococcus species. Afr J Biotechnol 2(9):293–295

    Article  CAS  Google Scholar 

  • Okpokwasili G, Nnubia C (1999) Biodegradation of drilling fluid by marine bacteria from below an oil rig. J Sci Eng Technol 6:1420–1428

    Google Scholar 

  • Onstott T et al (1998) Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiol J 15(4):353–385

    Article  Google Scholar 

  • Prasad M, Katiyar S (2010) Drill cuttings and fluids of fossil fuel exploration in north-eastern India: environmental concern and mitigation options. Curr Sci 98(12):1566–1569

    Google Scholar 

  • Rangel KM, Delclos G, Emery R, Symanski E (2011) Assessing maintenance of evaporative cooling systems in legionellosis outbreaks. J Occup Environ Hyg 8(4):249–265

    Article  PubMed  Google Scholar 

  • Riebeek H (2011) The carbon cycle. In: Earth observatory, NASA. http://earthobservatory.nasa.gov/Features/CarbonCycle/page2.php. Accessed 5 July 2016

  • Röling WF, Head IM, Larter SR (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154(5):321–328

    Article  PubMed  Google Scholar 

  • Salinas MB et al (2004) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol 54(3):645–649

    Article  CAS  PubMed  Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44(5):649–661

    Article  CAS  Google Scholar 

  • Struchtemeyer CG, Elshahed MS (2012) Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA. FEMS Microbiol Ecol 81(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale. Appl Environ Microbiol 77(14):4744–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struchtemeyer CG, Morrison MD, Elshahed MS (2012) A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells. Int Biodeterior Biodegrad 71:15–21

    Article  CAS  Google Scholar 

  • Tseng H-Y, Onstott TC (1997) A tectogenetic origin for the deep subsurface microorganisms of Taylorsville Basin: thermal and fluid flow model constraints. FEMS Microbiol Rev 20(3–4):391–397

    Article  CAS  Google Scholar 

  • Veil J (2010) Water management technologies used by Marcellus Shale Gas Producers. Final Report ANL/EVS/R-10/3 prepared for United States Department of Energy. Argonne National Laboratory (ANL), Lemont

    Book  Google Scholar 

  • Vengosh A, Warner N, Jackson R, Darrah T (2013) The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States. Procedia Earth Planet Sci 7:863–866

    Article  CAS  Google Scholar 

  • Vengosh A, Jackson RB, Warner N, Darrah TH, Kondash A (2014) A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ Sci Technol 48(15):8334–8348

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chen X, Jha AN, Rogers H (2014) Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States. Renew Sustain Energy Rev 30:1–28

    Article  Google Scholar 

  • Wilhelms A, Larter S, Head I, Farrimond P, Di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411(6841):1034–1037

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Xi W, Ye W, Yang H (2007) Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences. FEMS Microbiol Ecol 61(1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141–251

    Article  CAS  PubMed  Google Scholar 

  • Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28(2):141–155

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Mrs. Ramona Witcher for the editing and proofreading assistance with this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Struchtemeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Struchtemeyer, C.G. (2016). Microbiology of Oil- and Natural Gas-Producing Shale Formations: An Overview. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-44535-9_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44535-9_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44535-9

  • Online ISBN: 978-3-319-44535-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics