Skip to main content

Combined Model-Free Decoupling Control and Double Resonant Control in Parallel Nanopositioning Stages for Fast and Precise Raster Scanning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9834))

Abstract

A design of double resonant control combined with a model-free decoupling filter (MFDF) is presented in this paper. The design is demonstrated using the proposed MFDF to decouple a parallel multi-input multi-output (MIMO) system into several single-input single-output systems and applying a double resonant controller for vibration damping and cross coupling reduction in nanopositioners. Raster scan results of simulations based on an identified MIMO transfer function of a nanopositioning stage over an area of 4 μm × 0.4 μm with small RMS errors are demonstrated. Comparisons with using the double resonant controller alone show the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Devasia, S., Eleftheriou, E., Moheimani, S.O.R.: A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15(5), 802–823 (2007)

    Article  Google Scholar 

  2. Ando, T.: High-speed atomic force microscopy coming of age. Nanotechnology 23(6), 062001 (2012)

    Article  Google Scholar 

  3. Pantazi, A., Sebastian, A., Antonakopoulos, T.A., et al.: Probe-based ultrahigh-density storage technology. IBM J. Res. Dev. 52(4.5), 493–511 (2008)

    Article  Google Scholar 

  4. Paul, P.C., Knoll, A.W., Holzner, F., et al.: Rapid turnaround scanning probe nanolithography. Nanotechnology 22(27), 275306 (2011)

    Article  Google Scholar 

  5. Yong, Y.K., Moheimani, S.O.R., Kenton, B.J., et al.: Invited review article: high-speed flexure-guided nanopositioning: Mechanical design and control issues. Rev. Sci. Instrum. 83(12), 121101 (2012)

    Article  Google Scholar 

  6. Yong, Y.K., Aphale, S.S., Moheimani, S.O.R.: Design, identification, and control of a flexure-based XY stage for fast nanoscale positioning. IEEE Trans. Nanotechnol. 8(1), 46–54 (2009)

    Article  Google Scholar 

  7. Tuma, T., Sebastian, A., Lygeros, J., et al.: The four pillars of nanopositioning for scanning probe microscopy: the position sensor, the scanning device, the feedback controller, and the reference trajectory. Control Syst. 33(6), 68–85 (2013)

    Article  MathSciNet  Google Scholar 

  8. Gu, G.Y., Zhu, L.M., Su, C.Y., et al.: Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans. Autom. Sci. Eng. 13(1), 313–332 (2016)

    Article  Google Scholar 

  9. Janocha, H., Kuhnen, K.: Real-time compensation of hysteresis and creep in piezoelectric actuators. Sens. Actuators A Phys. 79(2), 83–89 (2000)

    Article  Google Scholar 

  10. Clayton, G.M., Tien, S., Leang, K.K., et al.: A review of feedforward control approaches in nanopositioning for high-speed SPM. J. Dyn. Syst. Measur. Control 131(6), 061101 (2009)

    Article  Google Scholar 

  11. Yong, Y.K., Liu, K., Moheimani, S.O.R.: Reducing cross-coupling in a compliant XY nanopositioner for fast and accurate raster scanning. IEEE Trans. Control Syst. Technol. 18(5), 1172–1179 (2010)

    Article  Google Scholar 

  12. Li, Y., Xu, Q.: Development and assessment of a novel decoupled XY parallel micropositioning platform. IEEE/ASME Trans. Mechatron. 15(1), 125–135 (2010)

    Article  Google Scholar 

  13. Croft, D., Devasia, S.: Vibration compensation for high speed scanning tunneling microscopy. Rev. Sci. Instrum. 70(12), 4600–4605 (1999)

    Article  Google Scholar 

  14. Schitter, G., Stemmer, A.: Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy. IEEE Trans. Control Syst. Technol. 12(3), 449–454 (2004)

    Article  Google Scholar 

  15. Das, S.K., Pota, H.R., Petersen, I.R.: Damping controller design for nanopositioners: a mixed passivity, negative-imaginary, and small-gain approach. IEEE/ASME Trans. Mechatron. 20(1), 416–426 (2015)

    Article  Google Scholar 

  16. Croft, D., Shed, G., Devasia, S.: Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. J. Dyn. Syst. Measur. Control 123(1), 35–43 (2001)

    Article  Google Scholar 

  17. Leang, K.K., Devasia, S.: Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators. IEEE Trans. Control Syst. Technol. 15(5), 927–935 (2007)

    Article  Google Scholar 

  18. Das, S.K., Pota, H.R., Petersen, I.R.: A MIMO double resonant controller design for nanopositioners. IEEE Trans. Nanotechnol. 14(2), 224–237 (2015)

    Article  Google Scholar 

  19. Ter Braake, J.: Iterative Learning Control for High-Speed Atomic Force Microscopy. TU Delft, Delft University of Technology (2009)

    Google Scholar 

  20. Barton, K.L., Hoelzle, D.J., Alleyne, A.G., et al.: Cross-coupled iterative learning control of systems with dissimilar dynamics: design and implementation. Int. J. Control 84(7), 1223–1233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ling, J., Feng, Z., Xiao, X.: A position domain cross-coupled iteration learning control for contour tracking in multi-axis precision motion control systems. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R. (eds.) ICIRA 2015. LNCS, vol. 9244, pp. 667–679. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  22. Mahmood, I.A., Moheimani, S.O.R.: Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev. Sci. Instrum. 80(6), 063705 (2009)

    Article  Google Scholar 

  23. Aphale, S.S., Bhikkaji, B., Moheimani, S.O.R.: Minimizing scanning errors in piezoelectric stack-actuated nanopositioning platforms. IEEE Trans. Nanotechnol. 7(1), 79–90 (2008)

    Article  Google Scholar 

  24. Bhikkaji, B., Ratnam, M., Fleming, A.J., et al.: High-performance control of piezoelectric tube scanners. IEEE Trans. Control Syst. Technol. 15(5), 853–866 (2007)

    Article  Google Scholar 

  25. Pota, H.R., Moheimani, S.O.R., Smith, M.: Resonant controllers for smart structures. Smart Mater. Struct. 11(1), 1–8 (2002)

    Article  Google Scholar 

  26. Bhikkaji, B., Moheimani, S.O.R.: Integral resonant control of a piezoelectric tube actuator for fast nanoscale positioning. IEEE/ASME Trans. Mechatron. 13(5), 530–537 (2008)

    Article  Google Scholar 

  27. Das, S.K., Pota, H.R., Petersen, I.R.: Multivariable negative-imaginary controller design for damping and cross coupling reduction of nanopositioners: a reference model matching approach. IEEE/ASME Trans. Mechatron. 20(6), 3123–3134 (2015)

    Article  Google Scholar 

  28. Das, S.K., Pota, H.R., Petersen, I.R.: Resonant controller design for a piezoelectric tube scanner: a mixed negative-imaginary and small-gain approach. IEEE Trans. Control Syst. Technol. 22(5), 1899–1906 (2014)

    Article  Google Scholar 

  29. Li, Y., Xu, Q.: Modeling and performance evaluation of a flexure-based XY parallel micromanipulator. Mech. Mach. Theor. 44(12), 2127–2152 (2009)

    Article  MATH  Google Scholar 

  30. Aphale, S.S., Devasia, S., Moheimani, S.O.R.: High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties. Nanotechnology 19(12), 125503 (2008)

    Article  Google Scholar 

  31. Ljung, L.: System identification: theory for the user. PTR Prentice Hall Information and System Sciences Series (1999)

    Google Scholar 

Download references

Acknowledgment

This research was sponsored by National Natural Science Foundation of China (NSFC, Grant No. 51375349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ling, J., Feng, Z., Ming, M., Xiao, X. (2016). Combined Model-Free Decoupling Control and Double Resonant Control in Parallel Nanopositioning Stages for Fast and Precise Raster Scanning. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds) Intelligent Robotics and Applications. ICIRA 2016. Lecture Notes in Computer Science(), vol 9834. Springer, Cham. https://doi.org/10.1007/978-3-319-43506-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43506-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43505-3

  • Online ISBN: 978-3-319-43506-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics