Skip to main content

Designing Non-constructability Tasks in a Dynamic Geometry Environment

  • Chapter
  • First Online:
Digital Technologies in Designing Mathematics Education Tasks

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 8))

Abstract

This chapter highlights specific design features of tasks proposed in a Dynamic Geometry Environment (DGE) that can foster the production of indirect argumentations and proof by contradiction. We introduce the notion of open construction problem and describe the design of two types of problems, analysing their potential a priori, with the goal of elaborating on the potentials of designing problems in a DGE with respect to fostering processes of indirect argumentation. Specifically, we aim at showing how particular open construction problems, that we refer to as non-constructability problems, are expected to make indirect argumentations emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a more articulated and refined analysis of argumentation supporting mathematical impossibility see Antonini (2010).

  2. 2.

    The terminology “robust” and “soft” comes from Healy (2000) and refers to the fact that certain properties are or are not invariant under dragging.

  3. 3.

    Ascending and descending processes are presented in Arzarello et al. (2002), referring to Saada-Robert (1989).

References

  • Antonini, S. (2004). A statement, the contrapositive and the inverse: Intuition and argumentation. In Proceedings of the 28 th PME, Bergen, Norway (Vol. 2, pp. 47–54).

    Google Scholar 

  • Antonini, S. (2010). A model to analyse argumentations supporting impossibilities in mathematics. In M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34 th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 153–160). Belo Horizonte, Brazil: PME.

    Google Scholar 

  • Antonini, S., & Mariotti, M. A. (2006). Reasoning in an absurd world: Difficulties with proof by contradiction. In Proceedings of the 30 th PME Conference, Prague, Czech Republic (Vol. 2, pp. 65–72).

    Google Scholar 

  • Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving? Zentralblatt für Didaktik der Mathematik, 40(3), 401–412.

    Article  Google Scholar 

  • Antonini, S., & Mariotti, M. A. (2010). Abduction and the explanation of anomalies: The case of proof by contradiction. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.). Proceedings of the 6 th Conference of European Research in Mathematics Education, Lyon, France, 2009 (pp. 322–331).

    Google Scholar 

  • Arsac, G. (1999). Variations et variables de la démostration géométriques. Recherches en Didactique de Mathématiques, 19(3), 357–390.

    Google Scholar 

  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM, 34(3), 66–72.

    Google Scholar 

  • Arzarello, F., Bartolini Bussi, M. G., Leung, A., Mariotti, M. A., & Stevenson, I. (2012). Experimental approaches to theoretical thinking: Artefacts and proofs. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education—The 19 th ICMI study (pp. 97–137). New York: Springer.

    Google Scholar 

  • Baccaglini-Frank, A. (2010). Conjecturing in dynamic geometry: A model for conjecture-generation through maintaining dragging. Doctoral dissertation, University of New Hampshire, Durham, NH. ProQuest.

    Google Scholar 

  • Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. A. (2013). Reasoning by contradiction in dynamic geometry. PNA, 7(2), 63–73.

    Google Scholar 

  • Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures through dragging in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.

    Article  Google Scholar 

  • Boero, P., Garuti, R., & Mariotti, M. A. (1996). Some dynamic mental process underlying producing and proving conjectures. In Proceedings of 20 th PME Conference, Valencia, Spain (Vol. 2, pp. 121–128).

    Google Scholar 

  • Boero, P., Garuti, R., & Lemut, E. (2007). Approaching theorems in grade VIII. In P. Boero (Ed.), Theorems in school: from history epistemology and cognition to classroom practice (pp. 249–264). Sense Publishers.

    Google Scholar 

  • Cametti, O. (1755). Elementa Geometrie quae nova, et brevi methodo demostravit D. Octavianus Camettus. Firenze.

    Google Scholar 

  • Davis, P. (1993). Visual theorems. Educational Studies in Mathematics, 24, 333–344.

    Article  Google Scholar 

  • Di Sessa, A. A., Hoyles, C., & Noss, R. (1995). Computers and exploratory learning. Berlin, Germany: Springer.

    Google Scholar 

  • Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24, 139–162.

    Article  Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, Holland: Reidel Publishing Company.

    Google Scholar 

  • Healy, L. (2000). Identifying and explaining geometric relationship: Interactions with robust and soft Cabri constructions. In Proceedings of the 24th Conference of the IGPME, Hiroshima, Japan (Vol. 1, pp. 103–117).

    Google Scholar 

  • Heath, T. L. (Ed.) (1956) Euclid. The thirteen books of the elements (vol. 1). Dover.

    Google Scholar 

  • Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations—a case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.

    Article  Google Scholar 

  • Laborde, C. (2005). Robust and soft constructions: Two sides of the use of dynamic geometry environments. In Proceedings of the 10th Asian Technology Conference in Mathematics (pp. 22–35). Cheong-Ju, South Korea: Korea National University of Education.

    Google Scholar 

  • Laborde, J. M., & Sträßer, R. (1990). Cabri-Géomètre: A microworld of geometry for guided discovery learning. Zentralblatt für Didaktik der Mathematik, 22(5), 171–177.

    Google Scholar 

  • Legendre, A. M. (1802). Elementi di geometria di Adriano M. Legendre per la prima volta tradotti in italiano. Pisa: Tipografia della Società Letteraria.

    Google Scholar 

  • Leher, R., & Chazan, D. (1998). Designing learning environments for developing understanding of geometry and space. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of variation. International Journal of Computers for Mathematical Learning, 13, 135–157.

    Article  Google Scholar 

  • Leung, A., & Lopez-Real, F. (2002). Theorem justification and acquisition in dynamic geometry: A case of proof by contradiction. International Journal of Computers for Mathematical Learning, 7, 145–165. Netherlands: Kluwer Academic Publishers.

    Article  Google Scholar 

  • Leung, A., Baccaglini-Frank, A., & Mariotti, M. A. (2013). Discernment in dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439–460.

    Article  Google Scholar 

  • Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic software environment. Educational Studies in Mathematics Special Issue, 44, 25–53.

    Article  Google Scholar 

  • Mariotti, M. A. (2014). Transforming images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In S. Rezat, et al. (Eds.), Transformation—A fundamental idea of mathematics education (pp. 155–172). New York: Springer.

    Chapter  Google Scholar 

  • Mariotti, M. A., Bartollni Bussi, M., Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: From history and epistemology to cognition. In Proceedings of the 21th PME Conference, Lathi, Finland (Vol. 1, pp. 180–195).

    Google Scholar 

  • Mariotti, M. A., & Antonini, S. (2009). Breakdown and reconstruction of figural concepts in proofs by contradiction in geometry. In F. L. Lin, F. J. Hsieh, G. Hanna, & M. de Villers (Eds.), Proof and Proving in Mathematics Education, ICMI Study 19th Conference Proceedings (Vol. 2, pp. 82–87).

    Google Scholar 

  • Mogetta, C., Olivero, F., & Jones, K. (1999). Providing the motivation to prove in a dynamic geometry environment. In Proceedings of the British Society for Research into Learning Mathematics (pp. 91–96). Lancaster: St. Martin’s University College, Lancaster.

    Google Scholar 

  • Olivero, F. (2000). Conjecturing in open-geometric situations in Cabri-geometre: An exploratory classroom experiment. In C. Morgan, & K. Jones (Eds.), BSLRM Annual Publication of Proceedings.

    Google Scholar 

  • Saada-Robert, M. (1989). La microgénèse de la representation d’un problem. Psychologie Française, 34, 2/3.

    Google Scholar 

  • Sinclair, N., & Robutti, O. (2013). Technology and the role of proof: The case of dynamic geometry. In A. J. Bishop, M. A. Clements, C. Keitel, & F. Leung (Eds.), Third international handbook of mathematics education. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Thompson, D. R. (1996). Learning and teaching indirect proof. The Mathematics Teacher, 89(6), 474–482.

    Google Scholar 

  • Yerushalmy, M., Chazan, D., & Gordon, M. (1993). Posing problems: One aspect of bringing inquiry into classrooms. In J. Schwartz, M. Yerushalmy, & B. Wilson (Eds.), The geometric supposer, what is it a case of? (pp. 117–142). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Baccaglini-Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baccaglini-Frank, A., Antonini, S., Leung, A., Mariotti, M.A. (2017). Designing Non-constructability Tasks in a Dynamic Geometry Environment. In: Leung, A., Baccaglini-Frank, A. (eds) Digital Technologies in Designing Mathematics Education Tasks. Mathematics Education in the Digital Era, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-43423-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43423-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43421-6

  • Online ISBN: 978-3-319-43423-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics