Skip to main content

Luteal Angiogenesis

  • Chapter
  • First Online:
The Life Cycle of the Corpus Luteum

Abstract

The structure and function of the corpus luteum (CL) is dependent on the development of an intricate vasculature via the process of angiogenesis. The establishment of the luteal vascular network begins in the preovulatory follicle and is ultimately stimulated by the luteinizing hormone (LH) surge. Following ovulation, the corpus luteum undergoes extremely rapid growth and intense angiogenesis that is tightly regulated by a balance achieved between pro-angiogenic and anti-angiogenic factors. This review summarizes what is known about the critical control of luteal angiogenesis and the complex interplay between numerous factors, the functions of which are only just beginning to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fraser HM, Dickson SE, Lunn SF, Wulff C, Morris KD, Carroll VA, et al. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology. 2000;141:995–1000.

    CAS  PubMed  Google Scholar 

  2. Wulff C, Wiegand SJ, Saunders PTK, Scobie GA, Fraser HM. Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor Trap(A40)). Endocrinology. 2001;142:3244–54.

    CAS  PubMed  Google Scholar 

  3. Hazzard TM, Xu FH, Stouffer RL. Injection of soluble vascular endothelial growth factor receptor 1 into the preovulatory follicle disrupts ovulation and subsequent luteal function in rhesus monkeys. Biol Reprod. 2002;67:1305–12.

    Article  CAS  PubMed  Google Scholar 

  4. Yamashita H, Kamada D, Shirasuna K, Matsui M, Shimizu T, Kida K, et al. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol Reprod Dev. 2008;75:1449–56.

    Article  CAS  PubMed  Google Scholar 

  5. Robinson RS, Woad KJ, Hunter MG, Sinclair KD, Laird M, Joseph C, et al. Corpus luteum development and angiogenesis. In: Juengel JL, Miyamoto A, Price C, Reynolds LP, Smith MF, Webb R, editors. Reproduction in domestic ruminants VIII. Ashby-de-la-Zouch: Context Products; 2014. p. 327–86.

    Google Scholar 

  6. Reynolds L, Redmer D. Growth and development of the corpus luteum. J Reprod Fertil Suppl. 1999;54:181–91.

    CAS  PubMed  Google Scholar 

  7. Robinson RS, Woad KJ, Hammond AJ, Laird M, Hunter MG, Mann GE. Angiogenesis and vascular function in the ovary. Reproduction. 2009;138:869–81.

    Article  CAS  PubMed  Google Scholar 

  8. Robinson RS, Hammond AJ, Nicklin LT, Schams D, Mann GE, Hunter MG. Endocrine and cellular characteristics of corpora lutea from cows with a delayed post-ovulatory progesterone rise. Domest Anim Endocrinol. 2006;31:154–72.

    Article  CAS  PubMed  Google Scholar 

  9. Hojo T, Al-Zi'Abi MO, Skarzynski DJ, Acosta TJ, Okuda K. Changes in the vasculature of bovine corpus luteum during the estrous cycle and prostaglandin F2 alpha-induced luteolysis. J Reprod Dev. 2009;55:512–7.

    Article  PubMed  Google Scholar 

  10. Inskeep EK. Preovulatory, postovulatory, and postmaternal recognition effects of concentrations of progesterone on embryonic survival in the cow. J Anim Sci. 2004;82(E-Suppl):E24–E39.

    Google Scholar 

  11. Lonergan P. Influence of progesterone on oocyte quality and embryo development in cows. Theriogenology. 2011;76:1594–601.

    Article  CAS  PubMed  Google Scholar 

  12. Kaessmeyer S, Plendl J. Angiogenesis and vasculogenesis in the corpus luteum in vitro. Clin Hemorheol Microcirc. 2009;41:83–101.

    CAS  PubMed  Google Scholar 

  13. Robinson RS, Nicklin LT, Hammond AJ, Schams D, Hunter MG, Mann GE. Fibroblast growth factor 2 is more dynamic than vascular endothelial growth factor A during the follicle-luteal transition in the cow. Biol Reprod. 2007;77:28–36.

    Article  CAS  PubMed  Google Scholar 

  14. Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R. Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. J Endocrinol. 2000;167:371–82.

    Article  CAS  PubMed  Google Scholar 

  15. Kaya A, Atabekoglu CS, Kahraman K, Taskin S, Ozmen B, Berker B, et al. Follicular fluid concentrations of IGF-I, IGF-II, IGFBP-3, VEGF, AMH, and inhibin-B in women undergoing controlled ovarian hyperstimulation using GnRH agonist or GnRH antagonist. Eur J Obstet Gynecol Reprod Biol. 2012;164:167–71.

    Article  CAS  PubMed  Google Scholar 

  16. Rodgers RJ, Irving-Rodgers HF, Russell DL. Extracellular matrix of the developing ovarian follicle. Reproduction. 2003;126:415–24.

    Article  CAS  PubMed  Google Scholar 

  17. Curry TE, Smith MF. Impact of extracellular matrix remodeling on ovulation and the folliculo-luteal transition. Semin Reprod Med. 2006;24:228–41.

    Article  CAS  PubMed  Google Scholar 

  18. von Otte S, Paletta JRJ, Becker S, König S, Fobker M, Greb RR, et al. Follicular fluid high density lipoprotein-associated sphingosine 1-phosphate Is a novel mediator of ovarian angiogenesis. J Biol Chem. 2006;281:5398–405.

    Article  CAS  Google Scholar 

  19. Tokumura A, Miyake M, Nishioka Y, Yamano S, Aono T, Fukuzawa K. Production of lysophosphatidic acids by lysophospholipase D in human follicular fluids of in vitro fertilization patients. Biol Reprod. 1999;61:195–9.

    Article  CAS  PubMed  Google Scholar 

  20. Chen SU, Chou CH, Lee HY, Ho CH, Lin CW, Yang YS. Lysophosphatidic acid up-regulates expression of interleukin-8 and-6 in granulosa-lutein cells through its receptors and nuclear factor-kappa B dependent pathways: implications for angiogenesis of corpus luteum and ovarian hyperstimulation syndrome. J Clin Endocrinol Metab. 2008;93:935–43.

    Article  CAS  PubMed  Google Scholar 

  21. Skarzynski DJ, Piotrowska-Tomala KK, Lukasik K, Galvao A, Farberov S, Zalman Y, et al. Growth and regression in bovine corpora lutea: regulation by local survival and death pathways. Reprod Domest Anim. 2013;48:25–37.

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert I, Robert C, Dieleman S, Blondin P, Sirard MA. Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. Reproduction. 2011;141:193–205.

    Article  CAS  PubMed  Google Scholar 

  23. Berisha B, Steffl M, Amselgruber W, Schams D. Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation. Reproduction. 2006;131:319–29.

    Article  CAS  PubMed  Google Scholar 

  24. Berisha B, Steffl M, Welter H, Kliem H, Meyer HHD, Schams D, et al. Effect of the luteinising hormone surge on regulation of vascular endothelial growth factor and extracellular matrix-degrading proteinases and their inhibitors in bovine follicles. Reprod Fertil Dev. 2008;20:258–68.

    Article  CAS  PubMed  Google Scholar 

  25. van den Driesche S, Myers M, Gay E, Thong KJ, Duncan WC. HCG up-regulates hypoxia inducible factor-1 alpha in luteinized granulosa cells: implications for the hormonal regulation of vascular endothelial growth factor A in the human corpus luteum. Mol Hum Reprod. 2008;14:455–64.

    Article  PubMed  CAS  Google Scholar 

  26. Kim J, Bagchi IC, Bagchi MK. Signaling by hypoxia-inducible factors is critical for ovulation in mice. Endocrinology. 2009;150:3392–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu F, Stouffer RL, Müller J, Hennebold JD, Wright JW, Bahar A, et al. Dynamics of the transcriptome in the primate ovulatory follicle. Mol Hum Reprod. 2011;17:152–65.

    Article  CAS  PubMed  Google Scholar 

  28. Wissing ML, Kristensen SG, Andersen CY, Mikkelsen AL, Høst T, Borup R, et al. Identification of new ovulation-related genes in humans by comparing the transcriptome of granulosa cells before and after ovulation triggering in the same controlled ovarian stimulation cycle. Hum Reprod. 2014;29:997–1010.

    Article  CAS  PubMed  Google Scholar 

  29. Duffy DM (2015) Novel contraceptive targets to inhibit ovulation: the prostaglandin E2 pathway. Hum Reprod Update 21(5):652–670. doi:10.1093/humupd/dmv026.

  30. Fortune JE, Willis EL, Bridges PJ, Yang CS. The periovulatory period in cattle: progesterone, prostaglandins, oxytocin and ADAMTS proteases. Anim Reprod Sci. 2009;6:60–71.

    CAS  Google Scholar 

  31. Duffy DM, Stouffer RL. The ovulatory gonadotrophin surge stimulates cyclooxygenase expression and prostaglandin production by the monkey follicle. Mol Hum Reprod. 2001;7:731–9.

    Article  CAS  PubMed  Google Scholar 

  32. Trau HA, Davis JS, Duffy DM. Angiogenesis in the primate ovulatory follicle is stimulated by luteinizing hormone via prostaglandin E2. Biol Reprod. 2015;92(15):1–2.

    CAS  Google Scholar 

  33. Sakurai T, Tamura K, Kogo H. Stimulatory effects of eicosanolds on ovarian angiogenesis in early luteal phase in cyclooxygenase-2 inhibitor-treated rats. Eur J Pharmacol. 2005;516:158–64.

    Article  CAS  PubMed  Google Scholar 

  34. Sakurai T, Suzuki K, Yoshie M, Hashimoto K, Tachikawa E, Tamura K. Stimulation of tube formation mediated through the prostaglandin EP2 receptor in rat luteal endothelial cells. J Endocrinol. 2011;209:33–43.

    Article  CAS  PubMed  Google Scholar 

  35. Finetti F, Donnini S, Giachetti A, Morbidelli L, Ziche M. Prostaglandin E(2) primes the angiogenic switch via a synergic interaction with the fibroblast growth factor-2 pathway. Circ Res. 2009;105:657–66.

    Article  CAS  PubMed  Google Scholar 

  36. Zalman Y, Klipper E, Farberov S, Mondal M, Wee G, Folger JK, et al. Regulation of angiogenesis-related prostaglandin F2-alpha-induced genes in the bovine corpus luteum. Biol Reprod. 2012;86:92.

    Article  PubMed  CAS  Google Scholar 

  37. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159–78.

    Article  CAS  PubMed  Google Scholar 

  38. Ferrara N, Chen H, Davis-Smyth T, Gerber HP, Nguyen TN, Peers D, et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998;4:336–40.

    Article  CAS  PubMed  Google Scholar 

  39. Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R. Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy. Biol Reprod. 2000;63:1106–14.

    Article  CAS  PubMed  Google Scholar 

  40. Sugino N, Kashida S, Takiguchi S, Karube A, Kato H. Expression of vascular endothelial growth factor and its receptors in the human corpus luteum during the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab. 2000;85:3919–24.

    CAS  PubMed  Google Scholar 

  41. Fraser HM, Lunn SF. Regulation and manipulation of angiogenesis in the primate corpus luteum. Reproduction. 2001;121:355–62.

    Article  CAS  PubMed  Google Scholar 

  42. Robinson RS, Hammond AJ, Mann GE, Hunter MG. A novel physiological culture system that mimics luteal angiogenesis. Reproduction. 2008;135:405–13.

    Article  CAS  PubMed  Google Scholar 

  43. Woad KJ, Hammond AJ, Hunter M, Mann GE, Hunter MG, Robinson RS. FGF2 is crucial for the development of bovine luteal endothelial networks in vitro. Reproduction. 2009;138:581–8.

    Article  CAS  PubMed  Google Scholar 

  44. Laird M, Woad KJ, Hunter MG, Mann GE, Robinson RS. Fibroblast growth factor 2 induces the precocious development of endothelial cell networks in bovine luteinising follicular cells. Reprod Fertil Dev. 2013;25:372–86.

    Article  CAS  PubMed  Google Scholar 

  45. Woad KJ, Hunter MG, Mann GE, Laird M, Hammond AJ, Robinson RS. Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction. 2012;143:35–43.

    Article  CAS  PubMed  Google Scholar 

  46. De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P. Mechanisms of vessel branching filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol. 2009;29:639–49.

    Article  PubMed  CAS  Google Scholar 

  47. Herr D, Fraser HM, Konrad R, Holzheu I, Kreienberg R, Wulff C. Human chorionic gonadotropin controls luteal vascular permeability via vascular endothelial growth factor by down-regulation of a cascade of adhesion proteins. Fertil Steril 2013;99:1749–1758

    Google Scholar 

  48. Rodewald M, Herr D, Fraser HM, Hack G, Kreienberg R, Wulff C. Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor. Mol Hum Reprod. 2007;13:781–9.

    Article  CAS  PubMed  Google Scholar 

  49. Jiemtaweeboon S, Shirasuna K, Nitta A, Kobayashi A, Schuberth HJ, Shimizu T, et al. Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow. Reprod Biol Endocrinol. 2011;9:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Talbott H, Delaney A, Zhang P, Yu Y, Cushman R, Cupp AS, et al. Effects of IL8 and immune cells on the regulation of luteal progesterone secretion. Reprod 2014; 148:21–31.

    Google Scholar 

  51. Yan Q, Sage EH. SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem. 1999;47:1495–506.

    Article  CAS  PubMed  Google Scholar 

  52. McRae RS, Johnston HM, Mihm M, O’Shaughnessy PJ. Changes in mouse granulosa cell gene expression during early luteinization. Endocrinology. 2005;146:309–17.

    Article  CAS  PubMed  Google Scholar 

  53. Joseph C, Hunter MG, Sinclair KD, Robinson RS. The expression, regulation and function of secreted protein, acidic, cysteine-rich in the follicle-luteal transition. Reproduction. 2012;144:361–72.

    Article  CAS  PubMed  Google Scholar 

  54. Wiltbank MC, Salih SM, Atli MO, Luo W, Bormann CL, Ottobre JS, et al. Comparison of endocrine and cellular mechanisms regulating the corpus luteum of primates and ruminants. Anim Reprod. 2012;9:242–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Meidan R, Klipper E, Zalman Y, Yalu R. The role of hypoxia-induced genes in ovarian angiogenesis. Reprod Fertil Dev. 2013;25:343–50.

    Article  CAS  PubMed  Google Scholar 

  56. Nishimura R, Okuda K. Multiple roles of hypoxia in ovarian function: roles of hypoxia-inducible factor-related and -unrelated signals during the luteal phase. Reprod Fertil Dev. 2015. doi:10.1071/RD15010.

  57. Boonyaprakob U, Gadsby JE, Hedgpeth V, Routh PA, Almond GW. Expression and localization of hypoxia inducible factor-1 alpha mRNA in the porcine ovary. Can J Vet Res. 2005;69:215–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Duncan WC, van den Driesche S, Fraser HM. Inhibition of vascular endothelial growth factor in the primate ovary up-regulates hypoxia-inducible factor-1 alpha in the follicle and corpus luteum. Endocrinology. 2008;149:3313–20.

    Article  CAS  PubMed  Google Scholar 

  59. Nishimura R, Okuda K. Hypoxia is important for establishing vascularization during corpus luteum formation in cattle. J Reprod Dev. 2010;56:110–6.

    Article  CAS  PubMed  Google Scholar 

  60. Tam KK, Russell DL, Peet DJ, Bracken CP, Rodgers RJ, Thompson JG, et al. Hormonally regulated follicle differentiation and luteinization in the mouse is associated with hypoxia inducible factor activity. Mol Cell Endocrinol. 2010;327:47–55.

    Article  CAS  PubMed  Google Scholar 

  61. Gridley T. Notch signaling in vascular development and physiology. Development (Camb). 2007;134:2709–18.

    Article  CAS  Google Scholar 

  62. Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010;22:617–25.

    Article  CAS  PubMed  Google Scholar 

  63. Murta D, Batista M, Silva E, Trindade A, Mateus L, Duarte A, et al. Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle. Reprod Fertil Dev. 2015;27(7):1038–1048. doi:10.1071/RD13399.

  64. Vorontchikhina MA, Zimmermann RC, Shawber CJ, Tang HY, Kitajewski J. Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation. Gene Expr Patterns. 2005;5:701–9.

    Article  CAS  PubMed  Google Scholar 

  65. Jovanovic VP, Sauer CM, Shawber CJ, Gomez R, Wang X, Sauer MV, et al. Intraovarian regulation of gonadotropin-dependent folliculogenesis depends on notch receptor signaling pathways not involving Delta-like ligand 4 (Dll4). Reprod Biol Endocrinol. 2013;11:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fraser HM, Hastings JM, Allan D, Morris KD, Rudge JS, Wiegand SJ. Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary. Endocrinology. 2012;153:1972–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Accialini P, Hernandez SF, Bas D, Pazos MC, Irusta G, Abramovich D, et al. A link between Notch and progesterone maintains the functionality of the rat corpus luteum. Reproduction. 2015;149:1–10.

    Article  CAS  PubMed  Google Scholar 

  68. Petrik JJ, Gentry PA, Feige JJ, LaMarre J. Expression and localization of thrombospondin-1 and-2 and their cell-surface receptor, CD36, during rat follicular development and formation of the corpus luteum. Biol Reprod. 2002;67:1522–31.

    Article  CAS  PubMed  Google Scholar 

  69. Bagavandoss P, Sage EH, Vernon RB. Secreted protein, acidic and rich in cysteine (SPARC) and thrombospondin in the developing follicle and corpus luteum of the rat. J Histochem Cytochem. 1998;46:1043–9.

    Article  CAS  PubMed  Google Scholar 

  70. Farberov S, Meidan R. Functions and transcriptional regulation of thrombospondins and their interrelationship with fibroblast growth factor-2 in bovine luteal cells. Biol Reprod. 2014;91:58.

    Article  PubMed  CAS  Google Scholar 

  71. Garside SA, Henkin J, Morris KD, Norvell SM, Thomas FH, Fraser HM. A thrombospondin-mimetic peptide, ABT-898, suppresses angiogenesis and promotes follicular atresia in pre- and early-antral follicles in vivo. Endocrinology. 2010;151:5905–15.

    Article  CAS  PubMed  Google Scholar 

  72. Bates DO, Harper SJ. Anti-angiogenic isoforms of VEGF-A: key to anti-angiogenic therapy. Anticancer Res. 2008;28:3207–8.

    Google Scholar 

  73. Guzman A, Macias-Valencia R, Fierro-Fierro F, Gutierrez CG, Rosales-Torres AM. The corpora lutea proangiogenic state of VEGF system components is turned to antiangiogenic at the later phase of the oestrous cycle in cows. Animal. 2015;9:301–7.

    Article  CAS  PubMed  Google Scholar 

  74. Qiu Y, Seager M, Osman A, Castle-Miller J, Bevan H, Tortonese DJ, et al. Ovarian VEGF(165)B expression regulates follicular development, corpus luteum function and fertility. Reproduction. 2012;143:501–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shirasuna K, Kobayashi A, Nitta A, Nibuno S, Sasahara K, Shimizu T, et al. Possible action of vasohibin-1 as an inhibitor in the regulation of vascularization of the bovine corpus luteum. Reproduction. 2012;143:491–500.

    Article  CAS  PubMed  Google Scholar 

  76. Tamura K, Matsushita M, Endo A, Kutsukake M, Kogo H. Effect of insulin-like growth factor-binding protein 7 on steroidogenesis in granulosa cells derived from equine chorionic gonadotropin-primed immature rat ovaries. Biol Reprod. 2007;77:485–91.

    Article  CAS  PubMed  Google Scholar 

  77. Tamura K, Yoshie M, Hashimoto K, Tachikawa E. Inhibitory effect of insulin-like growth factor-binding protein-7 (IGFBP7) on in vitro angiogenesis of vascular endothelial cells in the rat corpus luteum. J Reprod Dev. 2014;60:447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Christenson LK, Gunewardena S, Hong X, Spitschak M, Baufeld A, Vanselow J. Research resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Mol Endocrinol. 2013;27:1153–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol. 2008;28:223–32.

    Article  CAS  PubMed  Google Scholar 

  80. Bentley K, Franco CA, Philippides A, Blanco R, Dierkes M, Gebala V, et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol. 2014;16:309–21.

    Article  CAS  PubMed  Google Scholar 

  81. Nakhuda GS, Zimmermann RC, Bohlen P, Liao F, Sauer MV, Kitajewski J. Inhibition of the vascular endothelial cell (VE)-specific adhesion molecule VE-cadherin blocks gonadotropin-dependent folliculogenesis and corpus luteum formation and angiogenesis. Endocrinology. 2005;146:1053–9.

    Article  CAS  PubMed  Google Scholar 

  82. Maroni D, Davis JS. TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum. J Cell Sci. 2011;124:2501–10.

    Article  CAS  PubMed  Google Scholar 

  83. Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV, et al. The FGF system has a key role in regulating vascular integrity. J Clin Invest. 2008;118:3355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ozerdem U, Stallcup WB. Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis. 2003;6:241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sleer LS, Taylor CC. Platelet-derived growth factors and receptors in the rat corpus luteum: localization and identification of an effect on luteogenesis. Biol Reprod. 2007;76:391–400.

    Article  CAS  PubMed  Google Scholar 

  86. Kuhnert F, Tam BYY, Sennino B, Gray JT, Yuan J, Jocson A, et al. Soluble receptor-mediated selective inhibition of VEGFR and PDGFR beta signaling during physiologic and tumor angiogenesis. Proc Natl Acad Sci USA. 2008;105:10185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Redmer DA, Doraiswamy V, Bortnem BJ, Fisher K, Jablonka-Shariff A, Grazul-Bilska AT, et al. Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum. Biol Reprod. 2001;65:879–89.

    Article  CAS  PubMed  Google Scholar 

  88. Amselgruber WM, Schafer M, Sinowatz F. Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study. Anat Histol Embryol. 1999;28:157–66.

    Article  CAS  PubMed  Google Scholar 

  89. Papetti M, Shujath J, Riley KN, Herman IM. FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci. 2003;44:4994–5005.

    Article  PubMed  Google Scholar 

  90. Woad KJ, Baxter G, Hogg CO, Bramley TA, Webb R, Armstrong DG. Expression of mRNA encoding insulin-like growth factors I and II and the type 1 IGF receptor in the bovine corpus luteum at defined stages of the oestrous cycle. J Reprod Fertil. 2000;120:293–302.

    Article  CAS  PubMed  Google Scholar 

  91. Schams D, Kosmann M, Berisha B, Amselgruber WM, Miyamoto A. Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells. Exp Clin Endocrinol Diabetes. 2001;109:155–62.

    Article  CAS  PubMed  Google Scholar 

  92. Plendl J. Angiogenesis and vascular regression in the ovary. Anat Histol Embryol. 2000;29:257–66.

    Article  CAS  PubMed  Google Scholar 

  93. Bach LA. Endothelial cells and the IGF system. J Mol Endocrinol. 2015;54:R1–13.

    Article  CAS  PubMed  Google Scholar 

  94. Hellstrom A, Carlsson B, Niklasson A, Segnestam K, Boguszewski M, De Lacerda L, et al. IGF-1 is critical for normal vascularization of the human retina. J Clin Endocrinol Metab. 2002;87:3413–6.

    Article  CAS  PubMed  Google Scholar 

  95. Jacobo SMP, Kazlauskas A. Insulin-like growth factor 1 (IGF-1) stabilizes nascent blood vessels. J Biol Chem. 2015;290:6349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Grado-Ahuir JA, Aad PY, Ranzenigo G, Caloni F, Cremonesi F, Spicer LJ. Microarray analysis of insulin-like growth factor-I-induced changes in messenger ribonucleic acid expression in cultured porcine granulosa cells: Possible role of insulin-like growth factor-I in angiogenesis. J Anim Sci. 2009;87:1921–33.

    Article  CAS  PubMed  Google Scholar 

  97. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–88.

    Article  PubMed  Google Scholar 

  98. Ma J, Waxman DJ. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther. 2008;7:3670–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005;15:102–11.

    Article  CAS  PubMed  Google Scholar 

  100. Kraft A, Weindel K, Ochs A, Marth C, Zmija J, Schumacher P, et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer (Phila). 1999;85:178–87.

    Article  CAS  Google Scholar 

  101. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of Bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–96.

    Article  CAS  PubMed  Google Scholar 

  102. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of Bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365:2473–83.

    Article  CAS  PubMed  Google Scholar 

  103. Ledermann JA, Hackshaw A, Kaye S, Jayson G, Gabra H, McNeish I, et al. Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. J Clin Oncol. 2011;29:3798–804.

    Article  CAS  PubMed  Google Scholar 

  104. du Bois A, Floquet A, Kim JW, Rau J, del Campo JM, Friedlander M, et al. Incorporation of pazopanib in maintenance therapy of ovarian cancer. J Clin Oncol. 2014;32:3374–82.

    Article  PubMed  Google Scholar 

  105. Karlan BY, Oza AM, Richardson GE, Provencher DM, Hansen VL, Buck M, et al. Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. J Clin Oncol. 2012;30:362–71.

    Article  CAS  PubMed  Google Scholar 

  106. Marchetti C, Gasparri ML, Ruscito I, Palaia I, Perniola G, Carrone A, et al. Advances in anti-angiogenic agents for ovarian cancer treatment: the role of trebananib (AMG 386). Crit Rev Oncol Hematol. 2015;94:302–10.

    Article  PubMed  Google Scholar 

  107. Monk BJ, Poveda A, Vergote I, Raspagliesi F, Fujiwara K, Bae D-S, et al. Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15:799–808.

    Article  CAS  PubMed  Google Scholar 

  108. Campbell NE, Greenaway J, Henkin J, Moorehead RA, Petrik J. The thrombospondin-1 mimetic ABT-510 increases the uptake and effectiveness of cisplatin and paclitaxel in a mouse model of epithelial ovarian cancer. Neoplasia. 2010;12:275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Delvigne A, Rozenberg S (2002) Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum Reprod Update 8:559–577.

    Google Scholar 

  110. Pietrowski D, Szabo L, Sator M, Just A, Egarter C. Ovarian hyperstimulation syndrome is correlated with a reduction of soluble VEGF receptor protein level and a higher amount of VEGF-A. Hum Reprod. 2012;27:196–9.

    Article  CAS  PubMed  Google Scholar 

  111. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol. 2002;39:225–37.

    Article  CAS  PubMed  Google Scholar 

  112. Naredi N, Talwar P, Sandeep K. VEGF antagonist for the prevention of ovarian hyperstimulation syndrome: current status. Med J Armed Forces India. 2014;70:58–63.

    Article  PubMed  Google Scholar 

  113. Youssef MA, van Wely M, Hassan MA, Al-Inany HG, Mochtar M, Khattab S, et al. Can dopamine agonists reduce the incidence and severity of OHSS in IVF/ICSI treatment cycles? A systematic review and meta-analysis. Hum Reprod Update. 2010;16:459–66.

    Article  CAS  PubMed  Google Scholar 

  114. Robinson RS, Hammond AJ, Hunter MG, Mann GE. The induction of a delayed post-ovulatory progesterone rise in dairy cows: a novel model. Domest Anim Endocrinol. 2005;28:285–95.

    Article  CAS  PubMed  Google Scholar 

  115. Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ. Reproductive biology of female Bmal1 null mice. Reproduction. 2010;139:1077–90.

    Article  CAS  PubMed  Google Scholar 

  116. Moons DS, Jirawatnotai S, Tsutsui T, Franks R, Parlow AF, Hales DB, et al. Intact follicular maturation and defective luteal function in mice deficient ford cyclin-dependent kinase-4. Endocrinology. 2002;143:647–54.

    Article  CAS  PubMed  Google Scholar 

  117. Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci USA. 1998;95:5672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hsieh M, Boerboom D, Shimada M, Lo Y, Parlow AF, Luhmann UFO, et al. Mice null for Frizzled4 (Fzd4(−/−)) are infertile and exhibit impaired corpora lutea formation and function. Biol Reprod. 2005;73:1135–46.

    Article  CAS  PubMed  Google Scholar 

  119. Nakagawa S, Shimada M, Yanaka K, Mito M, Arai T, Takahashi E, et al. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development (Camb). 2014;141:4618–27.

    Article  CAS  Google Scholar 

  120. Bertolin K, Gossen J, Schoonjans K, Murphy BD. The orphan nuclear receptor nr5a2 is essential for luteinization in the female mouse ovary. Endocrinology. 2014;155:1931–43.

    Article  PubMed  CAS  Google Scholar 

  121. Labelle-Dumais C, Pare JF, Belanger L, Farookhi R, Dufort D. Impaired progesterone production in Nr5a2(+/−) mice leads to a reduction in female reproductive function. Biol Reprod. 2007;77:217–25.

    Article  CAS  PubMed  Google Scholar 

  122. Wahlberg P, Boden I, Paulsson J, Lund LR, Liu K, Ny T. Functional corpora lutea are formed in matrix metalloproteinase inhibitor-treated plasminogen-deficient mice. Endocrinology. 2007;148:1226–34.

    Article  CAS  PubMed  Google Scholar 

  123. Bachelot A, Beaufaron J, Servel N, Kedzia C, Monget P, Kelly PA, et al. Prolactin independent rescue of mouse corpus luteum life span: identification of prolactin and luteinizing hormone target genes. Am J Physiol Endocrinol Metabol. 2009;297:E676–84.

    Article  CAS  Google Scholar 

  124. Binart N, Helloco C, Ormandy CJ, Barra J, Clement-Lacroix P, Baran N, et al. Rescue of preimplantatory egg development and embryo implantation in prolactin receptor-deficient mice after progesterone administration. Endocrinology. 2000;141:2691–7.

    Article  CAS  PubMed  Google Scholar 

  125. Jimenez LM, Binelli M, Bertolin K, Pelletier RM, Murphy BD. Scavenger receptor-B1 and luteal function in mice. J Lipid Res. 2010;51:2362–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Noda Y, Ota K, Shirasawa T, Shimizu T. Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice. Biol Reprod. 2012;86(16):1–8.

    Article  PubMed  CAS  Google Scholar 

  127. Nothnick WB. Tissue inhibitor of metalloproteinase-1 (TIMP-1) deficient mice display reduced serum progesterone levels during corpus luteum development. Endocrinology. 2003;144:5–8.

    Article  CAS  PubMed  Google Scholar 

  128. Ingman WV, Robker RL, Woittiez K, Robertson SA. Null mutation in transforming growth factor beta 1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest. Endocrinology. 2006;147:835–45.

    Article  CAS  PubMed  Google Scholar 

  129. Li QL, Jimenez-Krassel F, Ireland JJ, Smith GW. Gene expression profiling of bovine preovulatory follicles: gonadotropin surge and prostanoid-dependent up-regulation of genes potentially linked to the ovulatory process. Reproduction. 2009;137:297–307.

    Article  CAS  PubMed  Google Scholar 

  130. Sirard M-A. Toward building the cow folliculome. Anim Reprod Sci. 2014;149:90–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by BBSRC, Pfizer and University of Nottingham. We greatly appreciate the technical assistance of staff at the University of Nottingham without which this work would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Robinson, R.S., Woad, K.J. (2017). Luteal Angiogenesis. In: Meidan, R. (eds) The Life Cycle of the Corpus Luteum. Springer, Cham. https://doi.org/10.1007/978-3-319-43238-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43238-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43236-6

  • Online ISBN: 978-3-319-43238-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics