Skip to main content

Advances in Discrete Dislocation Dynamics Simulations

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Over the past few decades, discrete dislocation dynamics, a modeling framework allowing for the simulation of the collective motion and interactions of dislocations in crystalline media, has been the subject of intense development worldwide. In recent years, a series of novel numerical algorithms, chemo-mechanical frameworks, and applications have been proposed. These advances have taken the field closer to enabling predictions of the mechanical response of engineering polycrystals, e.g., textured crystalline aggregates with impurities. Further, interesting pathways have been proposed to bridge discrete dislocation dynamics simulations with harmonic transition state theory, thereby delineating potential routes for performing coarse graining from the viewpoint of thermodynamics. This chapter summarizes some of the important recent contributions in the field of discrete dislocation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson PM, Hirth JP, Lothe J (2017) Theory of dislocations, 3rd edn. Cambridge University Press, New York

    MATH  Google Scholar 

  • Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15:554–595

    Article  ADS  Google Scholar 

  • Aubry S, Arsenlis A (2013) Use of spherical harmonics for dislocation dynamics in anisotropic elastic media. Model Simul Mater Sci Eng 21:065013

    Article  ADS  Google Scholar 

  • Bacon DJ (1992) Dislocations in crystals. In: Gerold Va (ed) Materials science and technology: a comprehensive treatment, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 411–482

    Google Scholar 

  • Bako B, Clouet E, Dupuy LM, Bletry M (2011) Dislocation dynamics simulations with climb: kinetics of dislocation loop coarsening controlled by bulk diffusion. Philos Mag 91:3173–3191

    Article  ADS  Google Scholar 

  • Balint DS, Deshpande VS, Needleman A, Van der Giessen E (2008) Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals. Int J Plast 24:2149–2172

    Article  MATH  Google Scholar 

  • Bertin N, Capolungo L (2018) A FFT-based formulation for discrete dislocation dynamics in heterogeneous media. J Comput Phys 355(Supplement C):366–384

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bertin N, Upadhyay MV, Pradalier C, Capolungo L (2015) A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics. Model Simul Mater Sci Eng 56:065009

    Article  ADS  Google Scholar 

  • Braislford A, Bullough R (1981) The theory of sink strengths. Philos Trans R Soc Lond Ser A Math Phys Sci 302:87–137

    Article  ADS  Google Scholar 

  • Bulatov VV, Cai W (2006) Computer simulations of dislocations. Oxford, New York

    MATH  Google Scholar 

  • Bulatov VV, Hsiung LL, Tang M, Arsenlis A, Bartelt MC, Cai W, Florando JN, Hiratani M, Rhee M, Hommes G, Pierce TG, de la Rubia TD (2006) Dislocation multi-junctions and strain hardening. Nature 440:1174–1178

    Article  ADS  Google Scholar 

  • Cai W, Bulatov VV (2006) A non-singular continuum theory of dislocations. J Mech Phys Solids 54:561–587

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Capolungo L, Spearot D, Cherkaoui M, McDowell D, Qu J, Jacob K (2007) Dislocation nucleation from bicrystal interfaces and grain boundary ledges: relationship to nanocrystalline deformation. J Mech Phys Solids 55:2300–2327

    Article  ADS  MATH  Google Scholar 

  • Chaussidon J, Robertson C, Rodney D, Fivel M (2008) Dislocation dynamics simulations of plasticity in fe laths at low temperature. Acta Mater 56:5466–5476

    Article  Google Scholar 

  • Clouet E, Ventelon L, Willaime F (2009) Dislocation core energies and core fields from first principles. Phys Rev Lett 102:055502

    Article  ADS  Google Scholar 

  • Danas K, Deshpande VS (2013) Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations. Model Simul Mater Sci Eng 21:045008

    Article  ADS  Google Scholar 

  • de Sansal C, Devincre B, Kubin L (2010) Grain size strengthening in microcrystalline copper: a three-dimensional dislocation dynamics simulation. In: Mechanical properties of solids XI. Key engineering materials, vol 423. Trans Tech Publications, Uetikon-Zuerich, pp 25–32

    Google Scholar 

  • Devincre B, Kubin LP (1997) Mesoscopic simulations of dislocations and plasticity. Mater Sci Eng A 234–236:8–14

    Article  Google Scholar 

  • de Wit R (1960) The continuum theory of stationary dislocations. Solid State Phys 10:249–292

    Article  Google Scholar 

  • Fan H, Aubry S, Arsenlis A, El-Awady JA (2015a) Orientation influence on grain size effects in ultrafine-grained magnesium. Scr Mater 97:25–28

    Article  Google Scholar 

  • Fan H, Aubry S, Arsenlis A, El-Awady JA (2015b) The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations. Acta Mater 92:126–139

    Article  Google Scholar 

  • Fan H, Aubry S, Arsenlis A, El-Awady JA (2016) Grain size effects on dislocation and twinning mediated plasticity in magnesium. Scr Mater 112:50–52

    Article  Google Scholar 

  • Fivel M (2008a) Discrete dislocation dynamics: principles and recent applications. In: Cazacu O (ed) Multiscale modeling of heterogenous materials: from microstructure to macro-scale properties. Wiley, New York, pp 17–36

    Chapter  Google Scholar 

  • Fivel MC (2008b) Discrete dislocation dynamics: an important recent break-through in the modelling of dislocation collective behaviour. Comptes Rendus Physique 9:427–436

    Article  ADS  Google Scholar 

  • Froseth A, Derlet P, Swygenhoven HV (2004) Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance. Acta Mater 52:5863–5870

    Article  Google Scholar 

  • Frost H, Ashby M (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

  • Gao S, Fivel M, Ma A, Hartmaier A (2017) 3D discrete dislocation dynamics study of creep behavior in ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model. J Mech Phys Solids 102:209–223

    Article  ADS  Google Scholar 

  • Gardner DJ, Woodward CS, Reynolds DR, Hommes G, Aubry S, Arsenlis A (2015) Implicit integration methods for dislocation dynamics. Model Simul Mater Sci Eng 23:025006

    Article  ADS  Google Scholar 

  • Geiser J (2009) Decomposition methods for differential equations. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Geslin PA, Gatti R, Devincre B, Rodney D (2017) Implementation of the nudged elastic band method in a dislocation dynamics formalism: application to dislocation nucleation. J Mech Phys Solids 108:49–67

    Article  ADS  MathSciNet  Google Scholar 

  • Ghoniem NM, Sun LZ (1999) Fast-sum method for the elastic field off three-dimensional dislocation ensembles. Phys Rev B 60:128–140

    Article  ADS  Google Scholar 

  • Ghoniem N, Tong S, Sun L (2000) Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys Rev B 61:913–927

    Article  ADS  Google Scholar 

  • Graham JT, Rollett AD, LeSar R (2016) Fast-fourier transform discrete dislocation dynamics. Model Simul Mater Sci Eng 24:085005

    Article  ADS  Google Scholar 

  • Graham JT, LeSar R, Capolungo L (2019, in preparation) Discrete dislocation dynamics based polycrystal plasticity

    Google Scholar 

  • Greer JR, Weinberger CR, Cai W (2008) Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: compression experiments and dislocation dynamics simulations. Mater Sci Eng A 493:21–25

    Article  Google Scholar 

  • Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985

    Article  ADS  Google Scholar 

  • Hirth J, Pond R (1996) Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater 44:4749–4763

    Article  Google Scholar 

  • Hirth JP, Zbib HM, Lothe J (1998) Forces on high velocity dislocations. Model Simul Mater Sci Eng 6:165–169

    Article  ADS  Google Scholar 

  • Hoagland RG, Hirth JP, Misra A (2006) On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos Mag 86:3537–3558

    Article  ADS  Google Scholar 

  • Hull D, Bacon DJ (2001) Introduction to dislocations, 4th edn. Butterworth Heinemann, Oxford

    Google Scholar 

  • Jonsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds.) Classical and Quantum Dynamics in Condensed Phase Simulations, World scientific, Singapore, pp 385–404

    Chapter  Google Scholar 

  • Keralavarma S, Benzerga A (2015) High-temperature discrete dislocation plasticity. J Mech Phys Solids 82:1–22

    Article  ADS  MathSciNet  Google Scholar 

  • Keralavarma SM, Cagin T, Arsenlis A, Benzerga AA (2012) Power-law creep from discrete dislocation dynamics. Phys Rev Lett 109:265504

    Article  ADS  Google Scholar 

  • Kombaiah B, Murty KL (2015) High temperature creep and deformation microstructures in recrystallized zircaloy-4. Philos Mag B 95:1656–1679

    Article  ADS  Google Scholar 

  • Kubin LP (2013) Dislocations, mesoscale simulations and plastic flow. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kubin LP, Canova G (1992) The modelling of dislocation patterns. Scr Met Mater 27:957–962

    Article  Google Scholar 

  • Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast fourier transform. Acta Mater 49:2723–2737

    Article  Google Scholar 

  • Lebensohn RA, Kanjarla KA, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69

    Article  Google Scholar 

  • Lemarchand C, Devincre B, Kubin LP (2001) Homogenization method for a discrete-continuum simulation of dislocation dynamics. J Mech Phys Solids 49:1969–1982

    Article  ADS  MATH  Google Scholar 

  • LeSar R (2014) Simulations of dislocation structure and response. Ann Rev Condens Matter Phys 5:375–407. https://doi.org/10.1146/annurev-conmatphys-031113-133858

    Article  ADS  Google Scholar 

  • Liu B, Raabe D, Roters F, Eisenlohr P, Lebensohn RA (2010) Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Model Simul Mater Sci Eng 18:085005

    Article  ADS  Google Scholar 

  • Liu B, Arsenlis A, Aubry S (2016) Computing forces on interface elements exerted by dislocations in an elastically anisotropic crystalline material. Model Simul Mater Sci Eng 24:055013

    Article  ADS  Google Scholar 

  • Madec R, Devincre B, Kubin L, Hoc T, Rodney D (2003) The role of collinear interaction in dislocation-induced hardening. Science 301(5641):1879–1882

    Article  ADS  Google Scholar 

  • Marinica MC, Willaime F, Mousseau N (2011) Energy landscape of small clusters of self-interstitial dumbbells in iron. Phys Rev B 83:094119

    Article  ADS  Google Scholar 

  • McDowell DL (1997) Evolving structure and internal state variables. Nadai award lecture. ASME IMECE, Dallas

    Google Scholar 

  • McDowell DL (1999) Non-associative aspects of multiscale evolutionary phenomena. In: Picu R, Krempl E (eds) Proceedings 4th international conference on constitutive laws for engineering materials. Rensselaer Polytechnic Institute, Troy, pp 54–57

    Google Scholar 

  • Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Misra A, Hirth J, Hoagland R (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824

    Article  Google Scholar 

  • Mordehai D, Clouet E, Fivel M, Verdier M (2008) Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics. Philos Mag 88:899–925

    Article  ADS  Google Scholar 

  • Morrow BM, Anderson KR, Kozar RW, Mills M (2013) An examination of the use of the modified jogged-screw model for predicting creep behavior in zircaloy-4. Acta Inf 61:4452–4460

    Google Scholar 

  • Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mousseau N, Barkema GT (1998) Traveling through potential energy landscapes of disordered materials: the activation-relaxation technique. Phys Rev E 57:2419–2424

    Article  ADS  Google Scholar 

  • Mura T (1987) Micromechanics of defects in solids. Martinus Nijhoff, Boston

    Book  MATH  Google Scholar 

  • Olmsted DL, Holm EA, Foiles SM (2009) Survey of computed grain boundary properties in face-centered cubic metals090000ii: grain boundary mobility. Acta Mater 57:3704–3713

    Article  Google Scholar 

  • Po G, Lazar M, Chandra Admal N, Ghoniem N (2017) A non-singular theory of dislocations in anisotropic crystals. arXiv 1706:00828

    Google Scholar 

  • Prasad Reddy GV, Robertson C, Depres C, Fivel M (2013) Effect of grain disorientation on early fatigue crack propagation in face-centred-cubic polycrystals: a three-dimensional dislocation dynamics investigation. Acta Materialia 61:5300–5310

    Article  Google Scholar 

  • Quek SS, Wu ZX, Zhang YW, Srolovitz DJ (2014) Polycrystal deformation in a discrete dislocation dynamics framework. Acta Mater 75:92–105

    Article  Google Scholar 

  • Quek SS, Chooi ZH, Wu Z, Zhang YW, Srolovitz DJ (2016) The inverse hall-petch relation in nanocrystalline metals: a discrete dislocation dynamics analysis. J Mech Phys Solids 88(Supplement C):252–266

    Article  ADS  MathSciNet  Google Scholar 

  • Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296

    Article  Google Scholar 

  • Saroukhani S, Nguyen LD, Leung KWK, Singh CV, Warner DH (2016) Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles. J Mech Phys Solids 90:203–214

    Article  ADS  MathSciNet  Google Scholar 

  • Serra A, Bacon D (1995) Computer simulation of screw dislocation interactions with twin boundaries in h.c.p. metals. Acta Met Mater 43:4465–4481

    Article  Google Scholar 

  • Serra A, Bacon D, Pond R (1999) Dislocations in interfaces in the h.c.p. metals090000i. Defects formed by absorption of crystal dislocations. Acta Mater 47:1425–1439

    Article  Google Scholar 

  • Sills RB, Aubry S (2018) Dislocation dynamics simulations of materials with complex physics. In: Andreoni W, Yip S (eds) Handbook of materials modeling, 2nd edn. Springer, Dordrecht, p xxx

    Google Scholar 

  • Sills RB, Cai W (2014) Efficient time integration in dislocation dynamics. Model Simul Mater Sci Eng 22:025003

    Article  ADS  Google Scholar 

  • Sills RB, Aghaei A, Cai W (2016a) Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Model Simul Mater Sci Eng 24:045019

    Article  ADS  Google Scholar 

  • Sills RB, Kuykendall WP, A AA, Cai W (2016b) Fundamentals of dislocation dynamics simulations. In: Weinberger CR, Tucker GJ (eds) Multiscale materials modeling for nanomechanics. Springer, Cham, p 5317

    Chapter  Google Scholar 

  • SiÅ¡ka F, Weygand D, Forest S, Gumbsch P (2009) Comparison of mechanical behaviour of thin film simulated by discrete dislocation dynamics and continuum crystal plasticity. Comput Mater Sci 45:793–799

    Article  Google Scholar 

  • Sobie C, McPhie MG, Capolungo L, Cherkaoui M (2014) The effect of interfaces on the mechanical behaviour of multilayered metallic laminates. Model Simul Mater Sci Eng 22:045007

    Article  ADS  Google Scholar 

  • Sobie C, Bertin N, Capolungo L (2015) Analysis of obstacle hardening models using dislocation dynamics: application to irradiation-induced defects. Met Mater Trans A 46:3761–3772

    Article  Google Scholar 

  • Sobie C, Capolungo L, McDowell DL, Martinez E (2017a) Modal analysis of dislocation vibration and reaction attempt frequency. Acta Mater 134:203–210

    Article  Google Scholar 

  • Sobie C, Capolungo L, McDowell DL, Martinez E (2017b) Scale transition using dislocation dynamics and the nudged elastic band method. J Mech Phys Solids 105:161–178

    Article  ADS  Google Scholar 

  • Sobie C, Capolungo L, McDowell DL, Martinez E (2017c) Thermal activation of dislocations in large scale obstacle bypass. J Mech Phys Solids 105:150–160

    Article  ADS  Google Scholar 

  • Vattré A (2017) Elastic strain relaxation in interfacial dislocation patterns: a parametric energy-based framework. J Mech Phys Solids 105(Supplement C):254–282

    Article  ADS  MathSciNet  Google Scholar 

  • Vattré A, Pan EN (2017) Interaction between semicoherent interfaces and volterra-type dislocations in dissimilar anisotropic materials. J Mater Res 32:3947–3957

    Article  ADS  Google Scholar 

  • Vattré A, Devincre B, Feyel F, Gatti R, Groh S, Jamond O, Roos A (2014a) Modelling crystal plasticity by 3d dislocation dynamics and the finite element method: the discrete-continuous model revisited. J Mech Phys Solids 63:491–505

    Article  ADS  MathSciNet  Google Scholar 

  • Vattré AJ, Abdolrahim N, Kolluri K, Demkowicz MJ (2014b) Computational design of patterned interfaces using reduced order models. Nat Sci Rep 4:1

    Google Scholar 

  • Verdier M, Fivel M, Groma I (1998) Mesoscopic scale simulation of dislocation dynamics in fcc metals: principles and applications. Model Simul Mater Sci Eng 6:755–770

    Article  ADS  Google Scholar 

  • Wang HY, LeSar R (1995) O(N) algorithm for dislocation dynamics. Philos Mag A 71:149–164

    Article  ADS  Google Scholar 

  • Wang Z, Ghoniem NM, Swaminarayan S, LeSar R (2006) A parallel algorithm for 3D dislocation dynamics. J Comput Phys 219:608–621

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wang ZQ, Beyerlein IJ, LeSar R (2007) Dislocation motion in high-strain-rate deformation. Philos Mag 87(16):2263–2279

    Article  ADS  Google Scholar 

  • Wang J, Zhou C, Beyerlein IJ, Shao S (2014) Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM 66:102–113

    Article  ADS  Google Scholar 

  • Weygand D, Friedman LH, der Giessen EV, Needleman A (2002) Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics. Model Simul Mater Sci Eng 10:437

    Article  ADS  Google Scholar 

  • Yin J, Barnett DM, Cai W (2010) Efficient computation of forces on dislocation segments in anisotropic elasticity. Model Simul Mater Sci Eng 18:045013

    Article  ADS  Google Scholar 

  • Zbib HM, de la Rubia TD, Rhee M, Hirth JP (2000) 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals. J Nucl Mater 276:154–165

    Article  ADS  Google Scholar 

  • Zheng Z, Balint DS, Dunne FPE (2016) Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys. Int J Plast 87:15–31

    Article  Google Scholar 

  • Zhou CZ, LeSar R (2012) Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int J Plast 30–31:185–201

    Article  Google Scholar 

  • Zhu T, Li J, Samanta A, Leach A, Gall K (2008) Temperature and strain-rate dependence of surface dislocation nucleation. Phys Rev Lett 100:025502

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RL wants to acknowledge the support of the National Science Foundation under Award Number DMR-1308430 for development of an FFT-based dislocation dynamics method. His work on polycrystal plasticity development was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358. LC would like thank support from the US Department of Energy, Office of Basic Energy Sciences (OBES) FWP-06SCPE401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard LeSar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

LeSar, R., Capolungo, L. (2018). Advances in Discrete Dislocation Dynamics Simulations. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_85-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_85-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics