Skip to main content

Mesoscale, Microstructure-Sensitive Modeling for Interface-Dominated, Nanostructured Materials

  • Living reference work entry
  • First Online:

Abstract

Predictions of the mechanical response of nanocrystalline metals and underlying microstructure evolution and deformation mechanisms are critically important for the manufacturing and design of new advanced structural metals that aim to outperform those in use today. In this chapter, recent advancements in modeling processing-microstructure-property relationships of nanocrystalline metals are covered. These developments include linking mesoscopic microstructure, such as grain (orientation, size, and shape), grain boundaries, twin boundaries, and interface properties with the development of local stress states and deformation mechanisms during mechanical processing or straining. Many recent examples of these techniques are discussed, particularly those demonstrating unanticipated couplings between size effects and texture development. The chapter concludes with a discussion of recommended directions and associated challenges to further advance mesoscale modeling efforts.

This is a preview of subscription content, log in via an institution.

References

  • Abdolvand H, Wilkinson AJ (2016) Assessment of residual stress fields at deformation twin tips and the surrounding environments. Acta Mater 105:219–231

    Article  Google Scholar 

  • Al-Fadhalah K et al (2005) Modeling texture evolution during rolling of a Cu–Nb multilayered system. Philos Mag 85(13):1419–1440

    Article  ADS  Google Scholar 

  • Anderoglu O et al (2008) Thermal stability of sputtered Cu films with nanoscale growth twins. J Appl Phys 103(9):094322

    Article  ADS  Google Scholar 

  • Ardeljan M et al (2015a) A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int J Plast 74:35–57

    Article  Google Scholar 

  • Ardeljan M et al (2015b) Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput Methods Appl Mech Eng 295:396–413

    Article  ADS  MathSciNet  Google Scholar 

  • Ardeljan M, Beyerlein IJ, Knezevic M (2017) Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling. Int J Plast 99:81–101

    Article  Google Scholar 

  • Ardeljan M et al (2018) Room temperature deformation mechanisms of Mg/Nb nanolayered composites. J Mater Res 33(10)

    Google Scholar 

  • Barrett CS, Massalski MA (1966) Structure of metals. McGraw-Hill, New York

    Google Scholar 

  • Beyerlein IJ, Hunter A (2016) Understanding dislocation mechanics at the meso-scale using phase field dislocation dynamics. Philos Trans R Soc A 374:20150166

    Article  ADS  MATH  Google Scholar 

  • Beyerlein IJ, Mayeur JR (2015) Mesoscale investigations for the evolution of interfaces in plasticity. Curr Opin Solid State Mater Sci 19(4):203–211

    Article  ADS  Google Scholar 

  • Beyerlein IJ, Tomé CN (2008) A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast 24(5):867–895

    Article  MATH  Google Scholar 

  • Beyerlein IJ, McCabe RJ, Tomé CN (2011) Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling study. J Mech Phys Solids 59(5):988–1003

    Article  ADS  Google Scholar 

  • Beyerlein IJ et al (2012) Structure–property–functionality of bimetal interfaces. JOM 64(10):1192–1207

    Article  Google Scholar 

  • Beyerlein IJ et al (2013a) Radiation damage tolerant nanomaterials. Mater Today 16(11):443–449

    Article  MathSciNet  Google Scholar 

  • Beyerlein IJ, Wang J, Zhang R (2013b) Interface-dependent nucleation in nanostructured layered composites. APL Mater 1(3):032112

    Article  ADS  Google Scholar 

  • Beyerlein IJ, Wang J, Zhang R (2013c) Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater 61(19):7488–7499

    Article  Google Scholar 

  • Beyerlein IJ et al (2013d) Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation. J Mater Res 28(13):1799–1812

    Article  ADS  Google Scholar 

  • Beyerlein IJ, Zhang X, Misra A (2014) Growth twins and deformation twins in metals. Annu Rev Mater Res 44(1):329–363

    Article  ADS  Google Scholar 

  • Beyerlein I et al (2015) Defect-interface interactions. Prog Mater Sci 74:125–210

    Article  Google Scholar 

  • Bronkhorst CA, Kalidindi SR, Anand L (1991) An experimental and analytical study of the evolution of crystallographic texturing in FCC materials. Texture Microstruct 14:1031–1036

    Article  Google Scholar 

  • Bronkhorst CA, Kalidindi SR, Anand L (1992) Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 341(1662):443–477

    ADS  Google Scholar 

  • Carpenter JS, McCabe RJ, Mayeur JR, Mara NA, Beyerlein IJ (2014) Interface-driven plasticity: the presence of an interface affected zone in metallic lamellar composites. https://doi.org/10.1002/adem.201400210

  • Carpenter JS et al (2015a) Bulk texture evolution of nanolamellar Zr–Nb composites processed via accumulative roll bonding. Acta Mater 92:97–108

    Article  Google Scholar 

  • Carpenter JS et al (2015b) The suppression of instabilities via biphase interfaces during bulk fabrication of nanograined Zr. Mater Res Lett 3(1):50–57

    Article  Google Scholar 

  • Champion Y et al (2001) Fabrication of bulk nanostructured materials from metallic nanopowders: structure and mechanical behaviour. Scr Mater 44(8–9):1609–1613

    Article  Google Scholar 

  • Chen J, Lu L, Lu K (2006) Hardness and strain rate sensitivity of nanocrystalline Cu. Scr Mater 54(11):1913–1918

    Article  Google Scholar 

  • Chen XH, Lu L, Lu K (2007) Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. J Appl Phys 102(8):083708

    Article  ADS  Google Scholar 

  • Cheng J, Ghosh S (2017) Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium. J Mech Phys Solids 99:512–538

    Article  ADS  MathSciNet  Google Scholar 

  • Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39(1–2):1–157

    Article  Google Scholar 

  • Dalla Torre F, Van Swygenhoven H, Victoria M (2002) Nanocrystalline electrodeposited Ni: microstructure and tensile properties. Acta Mater 50(15):3957–3970

    Article  Google Scholar 

  • Dao M et al (2006) Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater 54(20):5421–5432

    Article  Google Scholar 

  • Das D, Samanta A, Chattopadhyay PP (2006) Mechanical properties of bulk ultrafine-grained copper. Synth Reactivity Inorg Metal Org Nano Metal Chem 36(2):221–225

    Article  Google Scholar 

  • Delannay L, Jacques PJ, Kalidindi SR (2006) Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int J Plast 22(10):1879–1898

    Article  MATH  Google Scholar 

  • DREAM.3D Version 4.2 (2013) BlueQuartz Software. Springboro

    Google Scholar 

  • Ebrahimi F et al (1999) Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct Mater 11(3):343–350

    Article  Google Scholar 

  • El-Sherik AM et al (1992) Deviations from hall-petch behaviour in as-prepared nanocrystalline nickel. Scr Metall Mater 27(9):1185–1188

    Article  Google Scholar 

  • Foreman AJE (1967) The bowing of a dislocation segment. Philos Mag 15(137):1011–1021

    Article  ADS  Google Scholar 

  • Gao S et al (2015) Influence of misfit stresses on dislocation glide in single crystal superalloys: a three-dimensional discrete dislocation dynamics study. J Mech Phys Solids 76:276–290

    Article  ADS  MathSciNet  Google Scholar 

  • Ghorbanpour S et al (2017) A crystal plasticity model incorporating the effects of precipitates in superalloys: application to tensile, compressive, and cyclic deformation of Inconel 718. Int J Plast 99(Supplement C):162–185

    Article  Google Scholar 

  • Godon A et al (2010) Effects of grain orientation on the Hall–Petch relationship in electrodeposited nickel with nanocrystalline grains. Scr Mater 62(6):403–406

    Article  Google Scholar 

  • Groeber MA, Jackson MA (2014) DREAM. 3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(1):5

    Article  Google Scholar 

  • Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15

    Article  Google Scholar 

  • Ha S, Kim K (2010) Void growth and coalescence in f.c.c. single crystals. Int J Mech Sci 52(7):863–873

    Article  Google Scholar 

  • Han W et al (2013a) Design of radiation tolerant materials via interface engineering. Adv Mater 25(48):6975–6979

    Article  Google Scholar 

  • Han X et al (2013b) A yield function for single crystals containing voids. Int J Solids Struct 50(14):2115–2131

    Article  Google Scholar 

  • Hughes GD et al (1986) Hall-petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr Metall 20(1):93–97

    Article  Google Scholar 

  • Hunter A, Leu B, Beyerlein IJ (2018) Mesoscale modeling of slip transmission through biphase interfaces. J Mater Sci 53:5584–5603

    Google Scholar 

  • Jérusalem A et al (2008) Three-dimensional model of strength and ductility of polycrystalline copper containing nanoscale twins. Acta Mater 56(17):4647–4657

    Article  Google Scholar 

  • Kalidindi SR (1998) Incorporation of deformation twinning in crystal plasticity models. J Mech Phys Solids 46(2):267–271

    Article  ADS  MATH  Google Scholar 

  • Kang K, Wang J, Beyerlein IJ (2012) Atomic structure variations of mechanically stable fcc-bcc interfaces. J Appl Phys 111(5):053531

    Article  ADS  Google Scholar 

  • Khan A, Farrokh B, Takacs L (2008) Compressive properties of Cu with different grain sizes: sub-micron to nanometer realm. J Mater Sci 43(9):3305–3313

    Article  ADS  Google Scholar 

  • Kikuchi S et al (1997) Mechanical properties of Ag-Ni super-laminates produced by rolling. Mater Sci Eng A 234–236:1114–1117

    Article  Google Scholar 

  • Knezevic M et al (2014) Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models. Comput Methods Appl Mech Eng 277:239–259

    Article  ADS  MATH  Google Scholar 

  • Kocks UF, Tomé CN, Wenk H-R (1998) Texture and anisotropy. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24(8):835–853

    Article  Google Scholar 

  • Kumar KS, Van Swygenhoven H, Suresh S (2003a) Mechanical behavior of nanocrystalline metals and alloys1. Acta Mater 51(19):5743–5774

    Article  Google Scholar 

  • Kumar KS et al (2003b) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51(2):387–405

    Article  Google Scholar 

  • Kumar A et al (2017) An atomic-scale modeling and experimental study of 〈c+a〉 dislocations in Mg. Mater Sci Eng A 695(Supplement C):270–278

    Article  Google Scholar 

  • Lebensohn RA, Cazacu O (2012) Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals. Int J Solids Struct 49(26):3838–3852

    Article  Google Scholar 

  • Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41(9):2611–2624

    Article  Google Scholar 

  • Lebensohn RA, Tomé CN (1994) A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Mater Sci Eng A 175(1–2):71–82

    Article  Google Scholar 

  • Lebensohn RA, Liu Y, Ponte Castañeda P (2004) On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations. Acta Mater 52(18):5347–5361

    Article  Google Scholar 

  • Lebensohn RA, Tomé CN, Castaneda PP (2007) Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 87(28):4287–4322

    Article  ADS  Google Scholar 

  • Lebensohn RA, Rollett AD, Suquet P (2011) Fast Fourier transform-based modeling for the determination of micromechanical fields in polycrystals. JOM 63(3):13–18

    Article  Google Scholar 

  • Lentz M et al (2015) Effect of age hardening on the deformation behavior of an Mg–Y–Nd alloy: in-situ X-ray diffraction and crystal plasticity modeling. Mater Sci Eng A 628:396–409

    Article  Google Scholar 

  • Li L et al (2009) The stress–strain response of nanocrystalline metals: a quantized crystal plasticity approach. Acta Mater 57(3):812–822

    Article  Google Scholar 

  • Li N et al (2012) Direct observations of confined layer slip in Cu/Nb multilayers. Microsc Microanal 18(5):1155–1162

    Article  ADS  Google Scholar 

  • Lieberman EJ et al (2016) Microstructural effects on damage evolution in shocked copper polycrystals. Acta Mater 116:270–280

    Article  Google Scholar 

  • Liu WH et al (2007) Simulation of void growth and coalescence behavior with 3D crystal plasticity theory. Comput Mater Sci 40(1):130–139

    Article  Google Scholar 

  • Liu B et al (2010) Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Model Simul Mater Sci Eng 18(8):085005

    Article  ADS  Google Scholar 

  • Lu L et al (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304(5669):422–426

    Article  ADS  Google Scholar 

  • Lu L et al (2009a) Revealing the maximum strength in nanotwinned copper. Science 323(5914):607–610

    Article  ADS  Google Scholar 

  • Lu L et al (2009b) Size dependence of rate-controlling deformation mechanisms in nanotwinned copper. Scr Mater 60(12):1062–1066

    Article  Google Scholar 

  • Mara N, Beyerlein I (2014) Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J Mater Sci 49(19):6497–6516

    Article  ADS  Google Scholar 

  • Mara NA et al (2008) Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl Phys Lett 92(23):231901

    Article  ADS  Google Scholar 

  • Mayeur J et al (2014) The influence of grain interactions on the plastic stability of heterophase interfaces. Materials 7(1):302–322

    Article  ADS  Google Scholar 

  • Mayeur JR et al (2015) Incorporating interface affected zones into crystal plasticity. Int J Plast 65:206–225

    Article  Google Scholar 

  • Mbiakop A, Constantinescu A, Danas K (2015) An analytical model for porous single crystals with ellipsoidal voids. J Mech Phys Solids 84:436–467

    Article  ADS  MathSciNet  Google Scholar 

  • Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556

    Article  Google Scholar 

  • Mika DP, Dawson PR (1998) Effects of grain interaction on deformation in polycrystals. Mater Sci Eng A 257(1):62–76

    Article  Google Scholar 

  • Mirkhani H, Joshi SP (2011) Crystal plasticity of nanotwinned microstructures: a discrete twin approach for copper. Acta Mater 59(14):5603–5617

    Article  Google Scholar 

  • Mirkhani H, Joshi SP (2014) Mechanism-based crystal plasticity modeling of twin boundary migration in nanotwinned face-centered-cubic metals. J Mech Phys Solids 68:107–133

    Article  ADS  Google Scholar 

  • Misra A, Hoagland R, Kung H (2004) Thermal stability of self-supported nanolayered Cu/Nb films. Philos Mag 84(10):1021–1028

    Article  ADS  Google Scholar 

  • Misra A, Hirth J, Hoagland R (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53(18):4817–4824

    Article  Google Scholar 

  • Misra A et al (2007) The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59(9):62–65

    Article  Google Scholar 

  • Monclús MA et al (2013) Optimum high temperature strength of two-dimensional nanocomposites. APL Mater 1(5):052103

    Article  ADS  Google Scholar 

  • Needleman A (1972) Void growth in an elastic-plastic medium. J Appl Mech 39(4):964–970

    Article  Google Scholar 

  • Nizolek T et al (2014) Processing and deformation behavior of bulk Cu–Nb nanolaminates. Metallogr Microstruct Anal 3(6):470–476

    Article  Google Scholar 

  • Nizolek T et al (2015) Enhanced plasticity via kinking in cubic metallic nanolaminates. Adv Eng Mater 17(6):781–785

    Article  Google Scholar 

  • Nizolek T et al (2016) Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates. Appl Phys Lett 108(5):051903

    Article  ADS  Google Scholar 

  • Nugmanov D et al (2018) Origin of plastic anisotropy in (ultra)-fine-grained Mg–Zn–Zr alloy processed by isothermal multi-step forging and rolling: experiments and modeling. Mater Sci Eng A 713:81–93

    Article  Google Scholar 

  • Pan QS, Lu L (2014) Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins. Acta Mater 81:248–257

    Article  ADS  Google Scholar 

  • Pan QS, Lu QH, Lu L (2013) Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins. Acta Mater 61(4):1383–1393

    Article  Google Scholar 

  • Partridge PG (1967) The crystallography and deformation modes of hexagonal close-packed metals. Metall Revised 12:169

    Google Scholar 

  • Pathak S et al (2017) Strong, ductile, and thermally stable bcc-Mg nanolaminates. Sci Rep 7(1):8264

    Article  ADS  Google Scholar 

  • Potirniche GP et al (2006) Lattice orientation effects on void growth and coalescence in fcc single crystals. Int J Plast 22(5):921–942

    Article  MATH  Google Scholar 

  • Proust G et al (2009) Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast 25(5):861–880

    Article  MATH  Google Scholar 

  • Pushkareva M et al (2016) Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium. Mater Sci Eng A 671:221–232

    Article  Google Scholar 

  • Ritz H, Dawson P (2008) Sensitivity to grain discretization of the simulated crystal stress distributions in FCC polycrystals. Model Simul Mater Sci Eng 17(1):015001

    Article  ADS  Google Scholar 

  • Sarma GB, Dawson PR (1996) Effects of interactions among crystals on the inhomogeneous deformations of polycrystals. Acta Mater 44(5):1937–1953

    Article  Google Scholar 

  • Schacht T, Untermann N, Steck E (2003) The influence of crystallographic orientation on the deformation behaviour of single crystals containing microvoids. Int J Plast 19(10):1605–1626

    Article  MATH  Google Scholar 

  • Schuh CA, Nieh TG, Yamasaki T (2002) Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr Mater 46(10):735–740

    Article  Google Scholar 

  • Schwaiger R et al (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51(17):5159–5172

    Article  Google Scholar 

  • Shen TD et al (1995) On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying. J Mater Res 10(11):2892–2896

    Article  ADS  Google Scholar 

  • Shen YF et al (2005) Tensile properties of copper with nano-scale twins. Scr Mater 52(10):989–994

    Article  ADS  Google Scholar 

  • Shenoy M, Tjiptowidjojo Y, McDowell D (2008) Microstructure-sensitive modeling of polycrystalline IN 100. Int J Plast 24(10):1694–1730

    Article  MATH  Google Scholar 

  • Srivastava A, Needleman A (2015) Effect of crystal orientation on porosity evolution in a creeping single crystal. Mech Mater 90:10–29

    Article  Google Scholar 

  • Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324

    Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169

    Article  Google Scholar 

  • Van Houtte P (1978) Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metall Mater 26(4):591–604

    Article  Google Scholar 

  • Wan J, Yue Z, Lu Z (2005) Casting microporosity growth in single-crystal superalloys by a three-dimensional unit cell analysis. Model Simul Mater Sci Eng 13(6):875

    Article  ADS  Google Scholar 

  • Wang J et al (2008) Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater 56(13):3109–3119

    Article  Google Scholar 

  • Wang J et al (2012) Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater 60(4):1503–1513

    Article  Google Scholar 

  • Wang J et al (2013) Characterizing interface dislocations by atomically informed Frank-Bilby theory. J Mater Res 28(13):1646–1657

    Article  ADS  Google Scholar 

  • Xiao C et al (2001) Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel. Mater Sci Eng A 301(1):35–43

    Article  Google Scholar 

  • Xie C et al (2015) The impact of twin lamella thickness distribution on strength and endurance limit in nanotwinned copper. Mech Mater 84:91–99

    Article  Google Scholar 

  • Yasuna K et al (2000) Formation of nanoscale Fe/Ag multilayer by repeated press-rolling and its layer thickness dependence of magnetoresistance. Mater Sci Eng A 285(1–2):412–417

    Article  Google Scholar 

  • Yerra S et al (2010) Void growth and coalescence in single crystals. Int J Solids Struct 47(7):1016–1029

    Article  MATH  Google Scholar 

  • Yoo MH (1981) Slip, twinning, and fracture in hexagonal close-packed metals. Metall Mater Trans A 12:409–418

    Article  ADS  Google Scholar 

  • Yoshinaga H, Obara T, Morozumi S (1973) Twinning deformation in magnesium compressed along the C-axis. Mater Sci Eng 12(5–6):255–264

    Article  Google Scholar 

  • You ZS, Lu L, Lu K (2011) Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins. Acta Mater 59(18):6927–6937

    Article  Google Scholar 

  • You Z et al (2013) Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater 61(1):217–227

    Article  Google Scholar 

  • Youngdahl CJ et al (1997) Compressive yield strengths of nanocrystalline Cu and Pd. Scr Mater 37(6):809–813

    Article  Google Scholar 

  • Youssef KM et al (2004) Ultratough nanocrystalline copper with a narrow grain size distribution. Appl Phys Lett 85(6):929–931

    Article  ADS  Google Scholar 

  • Yu Q, Hou N, Yue Z (2010) Finite element analysis of void growth behavior in nickel-based single crystal superalloys. Comput Mater Sci 48(3):597–608

    Article  Google Scholar 

  • Yuan R, Beyerlein IJ, Zhou C (2015) Emergence of grain-size effects in nanocrystalline metals from statistical activation of discrete dislocation sources. Acta Mater 90:169–181

    Article  Google Scholar 

  • Yuan R, Beyerlein IJ, Zhou C (2016a) Coupled crystal orientation-size effects on the strength of nano crystals. Sci Rep 6:26254

    Article  ADS  Google Scholar 

  • Yuan R, Beyerlein IJ, Zhou C (2016b) Statistical dislocation activation from grain boundaries and its role in the plastic anisotropy of nanotwinned copper. Acta Mater 110(Supplement C):8–18

    Article  Google Scholar 

  • Zecevic M et al (2016) Origin of texture development in orthorhombic uranium. Mater Sci Eng A 665:108–124

    Article  Google Scholar 

  • Zhang X et al (2005) Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins. Appl Phys Lett 87(23):233116

    Article  ADS  Google Scholar 

  • Zhang Y et al (2007) High strength and high electrical conductivity in bulk nanograined Cu embedded with nanoscale twins. Appl Phys Lett 91(21):211901

    Article  ADS  Google Scholar 

  • Zheng S et al (2013) High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun 4:1696

    Article  Google Scholar 

  • Zhu YT, Liao XZ, Wu XL (2008) Deformation twinning in bulk nanocrystalline metals: experimental observations. JOM 60(9):60

    Article  Google Scholar 

  • Zhu L et al (2011) Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater 59(14):5544–5557

    Article  Google Scholar 

  • Zhu L et al (2015) Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model. J Mech Phys Solids 76:162–179

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the US National Science Foundation (NSF) under grant no. CMMI-1728224 (UCSB) and CMMI-1727495 (UNH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene J. Beyerlein .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Beyerlein, I.J., Knezevic, M. (2018). Mesoscale, Microstructure-Sensitive Modeling for Interface-Dominated, Nanostructured Materials. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_82-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_82-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics