Skip to main content

Pituitary Adenoma

  • Chapter
  • First Online:
Adult CNS Radiation Oncology

Abstract

Pituitary adenomas are a common benign neoplasm of the brain estimated to represent approximately 15–20% of all intracranial neoplasms. Clinically nonfunctioning pituitary adenomas account for 25–30% of pituitary adenomas, while secreting pituitary adenomas account for the rest. Pituitary adenomas are found incidentally on brain computed tomography (CT) or magnetic resonance imaging (MRI) scans in approximately 20–40% of cases. Other patients present with visual symptoms from tumor compression of the optic chiasm, headache, or hypopituitarism. Secreting adenomas often present with symptoms related to hormone hypersecretion. Treatment of pituitary adenomas can include a combination of medical management, surgical resection, and radiation therapy. Radiation is typically reserved for subtotal resections, recurrence, secreting pituitary adenomas refractory to surgery and medical management, and atypical pituitary adenomas. When radiation therapy is needed for nonfunctional pituitary adenomas, fractionated doses of 45–50.4 Gray (Gy) and radiosurgery doses of 15 Gy should be used. Secreting pituitary adenomas require higher doses, either 50.4–54 Gy for a fractionated course or at least 20 Gy for stereotactic radiosurgery (SRS). Radiation therapy provides excellent 10-year local control rates approaching 90–95%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 2015;17(Suppl 4):iv1–iv62.

    Google Scholar 

  2. Gittleman H, Ostrom QT, Farah PD, et al. Descriptive epidemiology of pituitary tumors in the United States, 2004–2009. J Neurosurg. 2014;121(3):527–35.

    Google Scholar 

  3. Mehta GU, Lonser RR. Management of hormone-secreting pituitary adenomas. Neuro Oncol. 2017;19(6):762–73.

    Google Scholar 

  4. Schoemaker MJ, Swerdlow AJ. Risk factors for pituitary tumors: a case-control study. Cancer Epidemiol Biomark Prev. 2009;18(5):1492–500.

    Google Scholar 

  5. Caimari F, Korbonits M. Novel genetic causes of pituitary adenomas. Clin Cancer Res. 2016;22(20):5030–42.

    Google Scholar 

  6. Vasilev V, Rostomyan L, Daly AF, et al. MANAGEMENT OF ENDOCRINE DISEASE: Pituitary ‘incidentaloma’: neuroradiological assessment and differential diagnosis. Eur J Endocrinol. 2016;175(4):R171–84.

    Google Scholar 

  7. Paschou S, Vryonidou A, Goulis DG. Pituitary incidentalomas: a guide to assessment, treatment and follow-up. Maturitas. 2016;92:143–9.

    Google Scholar 

  8. Molitch ME. Nonfunctioning pituitary tumors and pituitary incidentalomas. Endocrinol Metab Clin N Am. 2008;37(1):151–71, xi.

    Google Scholar 

  9. Vilar L, Naves LA, Azevedo MF, et al. Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the management of Cushing’s disease. Pituitary. 2010;13(2):123–9.

    Google Scholar 

  10. Ouyang T, Rothfus WE, Ng JM, et al. Imaging of the pituitary. Radiol Clin N Am. 2011;49(3):549–71, vii.

    Google Scholar 

  11. DeLellis RA, Lloyd RV, Heitz PU, et al. World Health Organization Classification of Tumors. Pathology and genetics of tumours of endocrine organs. Lyon: IARC; 2004.

    Google Scholar 

  12. Kovacs K, Horvath E, Vidal S. Classification of pituitary adenomas. J Neurooncol. 2001;54(2):121–7.

    Google Scholar 

  13. Wilson CB. A decade of pituitary microsurgery. The Herbert Olivecrona lecture. J Neurosurg. 1984;61(5):814–33.

    Google Scholar 

  14. Knosp E, Steiner E, Kitz K, et al. Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery. 1993;33(4):610–7; discussion 7–8.

    Google Scholar 

  15. Micko AS, Wohrer A, Wolfsberger S, et al. Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg. 2015;122(4):803–11.

    Google Scholar 

  16. Sherlock M, Ayuk J, Tomlinson JW, et al. Mortality in patients with pituitary disease. Endocr Rev. 2010;31(3):301–42.

    Google Scholar 

  17. Melmed S, Colao A, Barkan A, et al. Guidelines for acromegaly management: an update. J Clin Endocrinol Metab. 2009;94(5):1509–17.

    Google Scholar 

  18. Chole RA, Lim C, Dunham B, et al. A novel transnasal transsphenoidal speculum: a design for both microscopic and endoscopic transsphenoidal pituitary surgery. J Neurosurg. 2011;114(5):1380–5.

    Google Scholar 

  19. Pomeraniec IJ, Dallapiazza RF, Xu Z, et al. Early versus late Gamma Knife radiosurgery following transsphenoidal resection for nonfunctioning pituitary macroadenomas: a matched cohort study. J Neurosurg. 2016;125(1):202–12.

    Google Scholar 

  20. Erturk E, Tuncel E, Kiyici S, et al. Outcome of surgery for acromegaly performed by different surgeons: importance of surgical experience. Pituitary. 2005;8(2):93–7.

    Google Scholar 

  21. Yamada S, Fukuhara N, Horiguchi K, et al. Clinicopathological characteristics and therapeutic outcomes in thyrotropin-secreting pituitary adenomas: a single-center study of 90 cases. J Neurosurg. 2014;121(6):1462–73.

    Google Scholar 

  22. Platta CS, Mackay C, Welsh JS. Pituitary adenoma: a radiotherapeutic perspective. Am J Clin Oncol. 2010;33(4):408–19.

    Google Scholar 

  23. Gillam MP, Molitch ME, Lombardi G, et al. Advances in the treatment of prolactinomas. Endocr Rev. 2006;27(5):485–534.

    Google Scholar 

  24. Beck-Peccoz P, Brucker-Davis F, Persani L, et al. Thyrotropin-secreting pituitary tumors. Endocr Rev. 1996;17(6):610–38.

    Google Scholar 

  25. Schteingart DE. Drugs in the medical treatment of Cushing’s syndrome. Expert Opin Emerg Drugs. 2009;14(4):661–71.

    Google Scholar 

  26. Fleseriu M, Hashim IA, Karavitaki N, et al. Hormonal replacement in hypopituitarism in adults: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(11):3888–921.

    Google Scholar 

  27. Dekkers OM, Pereira AM, Romijn JA. Treatment and follow-up of clinically nonfunctioning pituitary macroadenomas. J Clin Endocrinol Metab. 2008;93(10):3717–26.

    Google Scholar 

  28. Sadik ZH, Voormolen EH, Depauw PR, et al. Treatment of non-functional pituitary adenoma post-operative remnants: adjuvant or delayed gamma knife radiosurgery? World Neurosurg. 2017;100:361.

    Google Scholar 

  29. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.

    Google Scholar 

  30. Lamba M, Breneman JC, Warnick RE. Evaluation of image-guided positioning for frameless intracranial radiosurgery. Int J Radiat Oncol Biol Phys. 2009;74(3):913–9.

    Google Scholar 

  31. Guckenberger M, Baier K, Guenther I, et al. Reliability of the bony anatomy in image-guided stereotactic radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys. 2007;69(1):294–301.

    Google Scholar 

  32. Loeffler JS, Shih HA. Radiation therapy in the management of pituitary adenomas. J Clin Endocrinol Metab. 2011;96(7):1992–2003.

    Google Scholar 

  33. Liao HI, Wang CC, Wei KC, et al. Fractionated stereotactic radiosurgery using the Novalis system for the management of pituitary adenomas close to the optic apparatus. J Clin Neurosci. 2014;21(1):111–5.

    Google Scholar 

  34. Killory BD, Kresl JJ, Wait SD, et al. Hypofractionated CyberKnife™ radiosurgery for perichiasmatic pituitary adenomas: early results. Neurosurgery. 2009;64(2 Suppl):A19.

    Google Scholar 

  35. Vladyka V, Liscak R, Novotny J Jr, et al. Radiation tolerance of functioning pituitary tissue in gamma knife surgery for pituitary adenomas. Neurosurgery. 2003;52(2):309–16; discussion 16–7.

    Google Scholar 

  36. Pai HH, Thornton A, Katznelson L, et al. Hypothalamic/pituitary function following high-dose conformal radiotherapy to the base of skull: demonstration of a dose-effect relationship using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys. 2001;49(4):1079–92.

    Google Scholar 

  37. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Google Scholar 

  38. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.

    Google Scholar 

  39. Anker CJ, Shrieve DC. Basic principles of radiobiology applied to radiosurgery and radiotherapy of benign skull base tumors. Otolaryngol Clin N Am. 2009;42(4):601–21.

    Google Scholar 

  40. Sheehan JP, Xu Z, Salvetti DJ, et al. Results of gamma knife surgery for Cushing’s disease. J Neurosurg. 2013;119(6):1486–92.

    Google Scholar 

  41. Darzy KH. Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab. 2009;5(2):88–99.

    Google Scholar 

  42. Tishler RB, Loeffler JS, Lunsford LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27(2):215–21.

    Google Scholar 

  43. Minniti G, Osti MF, Niyazi M. Target delineation and optimal radiosurgical dose for pituitary tumors. Radiat Oncol. 2016;11(1):135.

    Google Scholar 

  44. Patel TR, Chiang VL. Secondary neoplasms after stereotactic radiosurgery. World Neurosurg. 2014;81(3–4):594–9.

    Google Scholar 

  45. Erridge SC, Conkey DS, Stockton D, et al. Radiotherapy for pituitary adenomas: long-term efficacy and toxicity. Radiother Oncol. 2009;93(3):597–601.

    Google Scholar 

  46. Bir SC, Murray RD, Ambekar S, et al. Clinical and radiologic outcome of gamma knife radiosurgery on nonfunctioning pituitary adenomas. J Neurol Surg B Skull Base. 2015;76(5):351–7.

    Google Scholar 

  47. Laws ER, Sheehan JP, Sheehan JM, et al. Stereotactic radiosurgery for pituitary adenomas: a review of the literature. J Neurooncol. 2004;69(1–3):257–72.

    Google Scholar 

  48. Brada M, Ashley S, Ford D, et al. Cerebrovascular mortality in patients with pituitary adenoma. Clin Endocrinol. 2002;57(6):713–7.

    Google Scholar 

  49. Sattler MG, Vroomen PC, Sluiter WJ, et al. Incidence, causative mechanisms, and anatomic localization of stroke in pituitary adenoma patients treated with postoperative radiation therapy versus surgery alone. Int J Radiat Oncol Biol Phys. 2013;87(1):53–9.

    Google Scholar 

  50. Minniti G, Traish D, Ashley S, et al. Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after an additional 10 years. J Clin Endocrinol Metab. 2005;90(2):800–4.

    Google Scholar 

  51. Minniti G, Scaringi C, Poggi M, et al. Fractionated stereotactic radiotherapy for large and invasive non-functioning pituitary adenomas: long-term clinical outcomes and volumetric MRI assessment of tumor response. Eur J Endocrinol. 2015;172(4):433–41.

    Google Scholar 

  52. Diallo AM, Colin P, Litre CF, et al. Long-term results of fractionated stereotactic radiotherapy as third-line treatment in acromegaly. Endocrine. 2015;50(3):741–8.

    Google Scholar 

  53. Puataweepong P, Dhanachai M, Hansasuta A, et al. Outcomes for pituitary adenoma patients treated with Linac-based stereotactic radiosurgery and radiotherapy: a long term experience in Thailand. Asian Pac J Cancer Prev. 2015;16(13):5279–84.

    Google Scholar 

  54. Kopp C, Theodorou M, Poullos N, et al. Fractionated stereotactic radiotherapy in the treatment of pituitary adenomas. Strahlenther Onkol. 2013;189(11):932–7.

    Google Scholar 

  55. Kim JO, Ma R, Akagami R, et al. Long-term outcomes of fractionated stereotactic radiation therapy for pituitary adenomas at the BC Cancer Agency. Int J Radiat Oncol Biol Phys. 2013;87(3):528–33.

    Google Scholar 

  56. Wilson PJ, De-Loyde KJ, Williams JR, et al. A single centre’s experience of stereotactic radiosurgery and radiotherapy for non-functioning pituitary adenomas with the Linear Accelerator (Linac). J Clin Neurosci. 2012;19(3):370–4.

    Google Scholar 

  57. Sun DQ, Cheng JJ, Frazier JL, et al. Treatment of pituitary adenomas using radiosurgery and radiotherapy: a single center experience and review of literature. Neurosurg Rev. 2010;34(2):181–9.

    Google Scholar 

  58. Schalin-Jantti C, Valanne L, Tenhunen M, et al. Outcome of fractionated stereotactic radiotherapy in patients with pituitary adenomas resistant to conventional treatments: a 5.25-year follow-up study. Clin Endocrinol. 2010;73(1):72–7.

    Google Scholar 

  59. Iwata H, Sato K, Tatewaki K, et al. Hypofractionated stereotactic radiotherapy with CyberKnife™ for nonfunctioning pituitary adenoma: high local control with low toxicity. Neuro Oncol. 2011;13(8):916–22.

    Google Scholar 

  60. Brada M, Rajan B, Traish D, et al. The long-term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin Endocrinol. 1993;38(6):571–8.

    Google Scholar 

  61. Chang EF, Zada G, Kim S, et al. Long-term recurrence and mortality after surgery and adjuvant radiotherapy for nonfunctional pituitary adenomas. J Neurosurg. 2008;108(4):736–45.

    Google Scholar 

  62. Jenkins PJ, Bates P, Carson MN, et al. Conventional pituitary irradiation is effective in lowering serum growth hormone and insulin-like growth factor-I in patients with acromegaly. J Clin Endocrinol Metab. 2006;91(4):1239–45.

    Google Scholar 

  63. Milker-Zabel S, Zabel A, Huber P, et al. Stereotactic conformal radiotherapy in patients with growth hormone-secreting pituitary adenoma. Int J Radiat Oncol Biol Phys. 2004;59(4):1088–96.

    Google Scholar 

  64. Estrada J, Boronat M, Mielgo M, et al. The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease. N Engl J Med. 1997;336(3):172–7.

    Google Scholar 

  65. Minniti G, Osti M, Jaffrain-Rea ML, et al. Long-term follow-up results of postoperative radiation therapy for Cushing’s disease. J Neurooncol. 2007;84(1):79–84.

    Google Scholar 

  66. Brucker-Davis F, Oldfield EH, Skarulis MC, et al. Thyrotropin-secreting pituitary tumors: diagnostic criteria, thyroid hormone sensitivity, and treatment outcome in 25 patients followed at the National Institutes of Health. J Clin Endocrinol Metab. 1999;84(2):476–86.

    Google Scholar 

  67. Socin HV, Chanson P, Delemer B, et al. The changing spectrum of TSH-secreting pituitary adenomas: diagnosis and management in 43 patients. Eur J Endocrinol. 2003;148(4):433–42.

    Google Scholar 

  68. Li X, Li Y, Cao Y, et al. Safety and efficacy of fractionated stereotactic radiotherapy and stereotactic radiosurgery for treatment of pituitary adenomas: a systematic review and meta-analysis. J Neurol Sci. 2017;372:110–6.

    Google Scholar 

  69. Sheehan JP, Starke RM, Mathieu D, et al. Gamma Knife radiosurgery for the management of nonfunctioning pituitary adenomas: a multicenter study. J Neurosurg. 2013;119(2):446–56.

    Google Scholar 

  70. Starke RM, Williams BJ, Jane JA Jr, et al. Gamma Knife surgery for patients with nonfunctioning pituitary macroadenomas: predictors of tumor control, neurological deficits, and hypopituitarism. J Neurosurg. 2012;117(1):129–35.

    Google Scholar 

  71. Park KJ, Kano H, Parry PV, et al. Long-term outcomes after gamma knife stereotactic radiosurgery for nonfunctional pituitary adenomas. Neurosurgery. 2011;69(6):1188–99.

    Google Scholar 

  72. Franzin A, Spatola G, Losa M, et al. Results of gamma knife radiosurgery in acromegaly. Int J Endocrinol. 2012;2012:342034.

    Google Scholar 

  73. Sheehan J, Pouratian N, Steiner L, et al. Gamma Knife surgery for pituitary adenomas: factors related to radiological and endocrine outcomes. J Neurosurg. 2011;114(2):303–9.

    Google Scholar 

  74. Minniti G, Clarke E, Scaringi C, et al. Stereotactic radiotherapy and radiosurgery for non-functioning and secreting pituitary adenomas. Rep Pract Oncol Radiother. 2016;21(4):370–8.

    Google Scholar 

  75. Amichetti M, Amelio D, Minniti G. Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review. Radiat Oncol. 2012;7:210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay M. Burt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burt, L.M., Suneja, G., Shrieve, D.C. (2018). Pituitary Adenoma. In: Chang, E., Brown, P., Lo, S., Sahgal, A., Suh, J. (eds) Adult CNS Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-42878-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42878-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42877-2

  • Online ISBN: 978-3-319-42878-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics