Skip to main content

Layered Double Hydroxides Supported on Multi-walled Carbon Nanotubes for CO2 Adsorption

  • Chapter
  • First Online:
Book cover Supported Layered Double Hydroxides as CO2 Adsorbents for Sorption-enhanced H2 Production

Part of the book series: Springer Theses ((Springer Theses))

  • 443 Accesses

Abstract

This chapter is concerned with the study of layered double hydroxides supported on multi-walled carbon nanotubes. The chapter begins describing the methodology used to synthesise LDHs and LDH/carbon hybrids. Subsequently, the structural and physical properties of the adsorbents are examined by a range of characterisation techniques. Finally the adsorption capacity and thermal stability of the materials are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    After thermal treatment layered double hydroxides (LDHs) are transformed into layered double oxides (LDOs), which are active for CO2 adsorption at relatively high temperature (see Chap. 2, Sect. 2.4.1).

  2. 2.

    All the adsorbents presented in this chapter were prepared as part of this PhD project in the Department of Chemistry following the procedures developed by the Shaffer’s group. The carbon supported hybrids in small scale (~0.8 g) were synthesised by Dr. Garcia-Gallastegui.

  3. 3.

    Readers are referred to Chap. 2, Sect. 2.4.1, for further details.

  4. 4.

    The titration of the oxidised MWCNTs was carried out by Dr. Garcia-Gallastegui and is included for the sake of completeness of the chapter.

  5. 5.

    This value was obtained using the surface area of the oxidised MWCNTs (191 m2 g−1).

  6. 6.

    In the blank experiment the unsupported LDO was not exposed to CO2 adsorption. The pre-calcined sample was pretreated at 673 K during 1 h under flowing argon. Then the temperature was decreased to 313 K and the CO2 evolved during a temperature program was monitored by MS.

  7. 7.

    The deconvolution of the TPD profile was carried out using Fityk 0.8.9.

  8. 8.

    The CO2-TPD profile of the pure LDO is further discussed in Chap. 5 (Sect. 5.3.4), where the CO2 uptake of the sample and the percentage contribution of each desorption peak are given.

  9. 9.

    Representative adsorption profiles of the pure LDO and LDO1 at different temperatures and PCO2 = 200 mbar are presented in Appendix C.3.

  10. 10.

    The adsorption capacity at 573 K and PCO2 = 200 mbar was found to be 0.09 mol CO2/kg adsorbent (i.e. 0.43 mol CO2/kg LDO).

References

  1. Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854.

    Article  Google Scholar 

  2. Wang, Q., Luo, J., Zhong, Z., & Borgna, A. (2011). CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy & Environmental Science, 4(1), 42–55.

    Article  Google Scholar 

  3. Othman, M. R., Rasid, N. M., & Fernando, W. J. N. (2006). Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science, 61(5), 1555–1560.

    Article  Google Scholar 

  4. Aschenbrenner, O., McGuire, P., Alsamaq, S., Wang, J., Supasitmongkol, S., Al-Duri, B., et al. (2011). Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chemical Engineering Research and Design, 89(9), 1711–1721.

    Article  Google Scholar 

  5. Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.

    Article  Google Scholar 

  6. Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2010). On the Influence and role of alkali metals on supported and unsupported activated hydrotalcites for CO2 sorption. Industrial and Engineering Chemistry Research, 49(17), 8086–8093.

    Article  Google Scholar 

  7. Toebes, M. L., van Heeswijk, J. M. P., Bitter, J. H., Jos van Dillen, A., & de Jong, K. P. (2004). The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon, 42(2), 307–315.

    Article  Google Scholar 

  8. Wong, H. S. P., & Akinwande, D. (2011). Carbon nanotube and graphene device physics. NY, USA: Cambridge University Press.

    Google Scholar 

  9. Krueger, A. (2010). Carbon materials and nanotechnology. Cornwall, UK: WILEY-VCH.

    Book  Google Scholar 

  10. Othman, M. R., Helwani, Z., Martunus, & Fernando, W. J. N. (2009). Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Applied Organometallic Chemistry, 23(9), 335–346.

    Article  Google Scholar 

  11. Georgakilas, V., Gournis, D., Karakassides, M. A., Bakandritsos, A., & Petridis, D. (2004). Organic derivatization of single-walled carbon nanotubes by clays and intercalated derivatives. Carbon, 42(4), 865–870.

    Article  Google Scholar 

  12. Du, B., & Fang, Z. (2010). The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology, 21(31), 315603.

    Article  Google Scholar 

  13. Yang, J.-I., & Kim, J.-N. (2006). Hydrotalcites for adsorption of CO2 at high temperature. Korean Journal of Chemical Engineering, 23(1), 77–80.

    Article  Google Scholar 

  14. Climent, M. J., Corma, A., Iborra, S., Epping, K., & Velty, A. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316–326.

    Article  Google Scholar 

  15. Fogden, S., Verdejo, R., Cottam, B., & Shaffer, M. S. P. (2008). Purification of single walled carbon nanotubes: The problem with oxidation debris. Chemical Physics Letters, 460, 162–167.

    Article  Google Scholar 

  16. Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., & Diniz da Costa, J. C. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial and Engineering Chemistry Research, 45(22), 7504–7509.

    Article  Google Scholar 

  17. Hutson, N. D., Speakman, S. A., & Payzant, E. A. (2004). Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chemistry of Materials, 16(21), 4135–4143.

    Article  Google Scholar 

  18. Hu, H., Bhowmik, P., Zhao, B., Hamon, M. A., Itkis, M. E., & Haddon, R. C. (2001). Determination of the acidic sites of purified single-walled carbon nanotubes by acid—base titration. Chemical Physics Letters, 345(1–2), 25–28.

    Article  Google Scholar 

  19. Verdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., & Shaffer, M. (2007). Removal of oxidation debris from multi-walled carbon nanotubes. Chemical Communications, 5, 513–515.

    Article  Google Scholar 

  20. Zhao, H., & Nagy, K. L. (2004). Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. Journal of Colloid and Interface Science, 274(2), 613–624.

    Article  Google Scholar 

  21. Millange, F., Walton, R. I., & O’Hare, D. (2000). Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg–Al–carbonate hydrotalcite-like compounds. Journal of Materials Chemistry, 10(7), 1713–1720.

    Article  Google Scholar 

  22. Wang, H., Xiang, X., & Li, F. (2010). Facile synthesis and novel electrocatalytic performance of nanostructured Ni–Al layered double hydroxide/carbon nanotube composites. Journal of Materials Chemistry, 20(19), 3944–3952.

    Article  Google Scholar 

  23. Huang, S., Peng, H., Tjiu, W. W., Yang, Z., Zhu, H., Tang, T., et al. (2010). Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbon nanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites. The Journal of Physical Chemistry B, 114(50), 16766–16772.

    Article  Google Scholar 

  24. León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., & Auroux, A. (2010). Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Industrial and Engineering Chemistry Research, 49(8), 3663–3671.

    Article  Google Scholar 

  25. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., et al. (2004). Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. Journal of Catalysis, 228(1), 43–55.

    Google Scholar 

  26. Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders and porous solids. London, UK: Academic Press.

    Google Scholar 

  27. Di Cosimo, J. I., Apesteguía, C. R., Ginés, M. J. L., & Iglesia, E. (2000). Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. Journal of Catalysis, 190(2), 261–275.

    Article  Google Scholar 

  28. Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.

    Article  Google Scholar 

  29. Delpeux, S., Szostak, K., Frackowiak, E., & Béguin, F. (2005). An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity. Chemical Physics Letters, 404(4–6), 374–378.

    Article  Google Scholar 

  30. Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.

    Article  Google Scholar 

  31. Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.

    Article  Google Scholar 

  32. Ram Reddy, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial and Engineering Chemistry Research, 47(8), 2630–2635.

    Article  Google Scholar 

  33. Carvill, B. T., Hufton, J. R., Anand, M., & Sircar, S. (1996). Sorption-enhanced reaction process. AIChE Journal, 42(10), 2765–2772.

    Article  Google Scholar 

  34. Hutson, N. D., & Attwood, B. C. (2008). High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14(6), 781–789.

    Article  Google Scholar 

  35. Menzel, R., Tran, M. Q., Menner, A., Kay, C. W. M., Bismarck, A., & Shaffer, M. S. P. (2010). A versatile, solvent-free methodology for the functionalisation of carbon nanotubes. Chemical Science, 1(5), 603–608.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Iruretagoyena Ferrer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iruretagoyena Ferrer, D. (2016). Layered Double Hydroxides Supported on Multi-walled Carbon Nanotubes for CO2 Adsorption. In: Supported Layered Double Hydroxides as CO2 Adsorbents for Sorption-enhanced H2 Production. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41276-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41276-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41275-7

  • Online ISBN: 978-3-319-41276-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics