Skip to main content

Introduction

Bacteriophages
  • 251 Accesses

Abstract

As the ongoing crisis of antimicrobial resistance (AMR) threatens to bring an end to the era of the routine control of bacterial diseases, there is great interest in developing other approaches to controlling such infections. One of the oldest of these, the use of bacteriophages (viruses that can target and destroy bacteria) as therapeutic agents, is experiencing a resurgence of interest and is now considered a promising approach to countering AMR. First developed 100 years ago, this approach, known as phage therapy, was set aside in Western Europe and the USA when the use of chemical antibiotics became widespread. Now, the pressing need for new ways to control such resistant bacteria is resulting in progress in developing phage therapy, alongside a range of technologies based around bacteriophages, in medicine, and elsewhere.

Bacteriophages: Biology, Technology, and Therapy is intended to cover all aspects of work with bacteriophages, from basic biology to clinical trials and from early history to nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abedon ST, Thomas-Abedon C, Thomas A, Mazure H (2011) Bacteriophage prehistory: is or is not Hankin, 1896, a phage reference? Bacteriophage 1:174–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Barber KE, Ireland CE, Bukavyn N, Rybak MJ (2014) Observation of “seesaw effect” with vancomycin, teicoplanin, daptomycin and ceftaroline in 150 unique MRSA strains. Infect Dis Ther 3:35–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JC (2003) Virology. In: The encyclopedia of life sciences. Wiley, Chichester. https://doi.org/10.1038/npg.els.0000435. www.els.net

  • Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns J, Stent GS, Watson JD (eds) (2007) Phage and the origins of molecular biology. CSHL Press, New York

    Google Scholar 

  • CDC (2013) Antibiotic resistance threats in the United States, 2013. https://www.cdc.gov/drugresistance/threat-report-2013/index.html

  • Chain E, Florey HW, Adelaide MB et al (1940) Penicillin as a chemotherapeutic agent. Clin Orthop Relat Res 295:3–7

    Google Scholar 

  • Chan M (2016) WHO Director-General briefs UN on antimicrobial resistance. http://www.who.int/dg/speeches/2016/antimicrobial-resistance-un/en/

  • Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock REW, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Ólafsdóttir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH (2016) Alternatives to antibiotics–a pipeline portfolio review. Lancet Infectious Diseases 16: 239–251

    Google Scholar 

  • d’Herelle F (1917) Sur un microbe invisible antagonistic des bacilles dysenteriqes. C R Acad Sci Paris 165:373–375

    Google Scholar 

  • d’Herelle F (1919) Sur le role du microbe bacteriophage dans la typhose aviare. C R Acad Sci Paris 169:932–934

    Google Scholar 

  • Duckworth DH (1976) Who discovered bacteriophage? Bacteriol Rev 40:793–802

    PubMed  PubMed Central  CAS  Google Scholar 

  • Eaton MD, Bayne-Jones S (1934) Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections. JAMA 103:1769–1776; 1847–1853; 1934–1939

    Article  CAS  Google Scholar 

  • Fleming A (1945) https://www.nobelprize.org/nobel_prizes/medicine/laureates/1945/fleming-lecture.pdf

  • Harper DR (2011) Viruses: Biology, Applications and Control. Garland Science, New York

    Google Scholar 

  • Harper DR, Enright MC (2011) Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol 111:1–7

    Google Scholar 

  • Harper DR, Burrowes BH, Kutter EM (2014a) Bacteriophage: therapeutic uses. In: The encyclopedia of life sciences. Wiley, Chichester. www.els.net

  • Harper DR, Parracho HMRT, Walker J et al (2014b) Bacteriophages and biofilms. Antibiotics 3:270–284

    Article  CAS  PubMed Central  Google Scholar 

  • Harper DR, McConville M, Anderson FJ, Enright MC (2015) Antimicrobial phages. In: Tang YW et al (eds) Molecular medical microbiology, 2nd edn. Elsevier, San Diego

    Google Scholar 

  • Hiltunen T, Virta M, Laine AL (2017) Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos Trans R Soc Lond Ser B Biol Sci 372:20160039

    Article  Google Scholar 

  • Hobman JL, Crossman LC (2015) Bacterial antimicrobial metal ion resistance. J Med Microbiol 64:471–497

    Article  CAS  PubMed  Google Scholar 

  • Howie J (1986) Penicillin: 1929–40. Br Med J 293:158–159

    Article  CAS  Google Scholar 

  • Krueger AP, Scribner EJ (1941) The bacteriophage: its nature and its therapeutic use. JAMA 116:2160–2167

    Article  Google Scholar 

  • Lachapelle J-M, Castel O, Casado AF et al (2013) Antiseptics in the era of bacterial resistance: a focus on povidone iodine. Clin Pract 10:579–592

    Article  CAS  Google Scholar 

  • Lewis S (1925) Arrowsmith. Harcourt Brace and Company, New York

    Google Scholar 

  • Mathews CK (2015) Bacteriophage T4. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net

  • Marza JA, Soothill JS, Boydell P, Collyns TA (2006) Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 32:644–646

    Article  PubMed  Google Scholar 

  • McCallin S, Sarker SA, Barretto C et al (2013) Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology 443:187–196

    Article  CAS  PubMed  Google Scholar 

  • Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064–1073

    Article  CAS  PubMed  Google Scholar 

  • Pirnay JP, De Vos D, Verbeken G et al (2011) The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm Res 28:93493–93497

    Article  CAS  Google Scholar 

  • Rhoads DD, Wolcott RD, Kuskowski MA et al (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18:240–243

    Article  Google Scholar 

  • Rohwer F, Edwards R (2002) The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose T, Verbeken G, Vos DD et al (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4:66–73

    PubMed  PubMed Central  Google Scholar 

  • Ruska E (1986) Nobel lecture. The development of the electron microscope and of electron microscopy. http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/ruska-lecture.html

  • Sarker SA, Sultana S, Reuteler G et al (2016) Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4:124–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Schooley RT, Biswas B, Gill JJ et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61:e00954–e00917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318

    PubMed  CAS  Google Scholar 

  • Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129:2659–2675

    PubMed  CAS  Google Scholar 

  • Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 133:1111–1126

    PubMed  CAS  Google Scholar 

  • Spellberg B, Taylor-Blake B (2013) On the exoneration of Dr. William H. Stewart: debunking an urban legend. Infect Dis Poverty 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Streptomycin in Tuberculosis Trials Committee (1948) Streptomycin treatment of pulmonary tuberculosis. A Medical Research Council investigation. Br Med J 2:769–782

    Article  Google Scholar 

  • Sukkar E (2013) Why are there so few antibiotics in the research and development pipeline? Pharm J 291:520

    Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultramicroscopic viruses. Lancet 1915:1241

    Article  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis. Part 1: causes and threats. P T 40:277–283

    PubMed  PubMed Central  Google Scholar 

  • WHO (2017) WHO publishes list of bacteria for which new antibiotics are urgently needed. http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/

  • Wright A, Hawkins C, Anggard EA, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical Otolaryngology 34: 349–357

    Google Scholar 

  • Yang SJ, Xiong YQ, Boyle-Vavra S et al (2010) Daptomycin-oxacillin combinations in treatment of experimental endocarditis caused by daptomycin-nonsusceptible strains of methicillin-resistant Staphylococcus aureus with evolving oxacillin susceptibility (the “seesaw effect”). Antimicrob Agents Chemother 54:3161–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harper, D.R. (2018). Introduction. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Introduction to Bacteriophages
    Published:
    07 September 2020

    DOI: https://doi.org/10.1007/978-3-319-40598-8_48-2

  2. Original

    Introduction
    Published:
    10 August 2018

    DOI: https://doi.org/10.1007/978-3-319-40598-8_48-1