Skip to main content

Phage Display Technology and the Development of Phage-Based Vaccines

  • Living reference work entry
  • First Online:
Bacteriophages
  • 254 Accesses

Abstract

A great many phages are amenable to a range of common genetic manipulations. They are also easy to propagate to high numbers and simple to handle. This makes phages ideal for combinatorial applications such as phage display, in which peptides are expressed or adjoined to a phage capsid such that the peptide is available to interact with ligands in its vicinity (i.e., the peptide is displayed to the ligands). In the first part of this chapter, we discuss the use of phage display to selectively isolate peptides with defined binding properties such as specificity and affinity. Through the creation of phage display libraries and biopanning for peptides with desired properties, phage display is a powerful technique for protein engineering, including vaccine design.

Display phages themselves could be used as delivery vehicles for protein and genetic payloads to eukaryotic targets, as is discussed in the second section. Our ability to efficiently alter phages at the genetic level has allowed the development of modified phages which can act as scaffolds for the delivery of foreign proteins and DNA to nonbacterial targets. Coat proteins can be modified to include foreign proteins or peptides which can give phages artificial tropisms (e.g., to deliver cargoes to specific cell types) or which cause them to stimulate specific immune responses (as vaccines to protect against infection). The genetic material can be modified to include vaccine antigens that are expressed in the target cell or to include specific sequences for gene therapy.

Displayed peptides can also be used as functioning epitope and ligand mimics, and therefore display phages can serve as antibody mimics. Or they can be used to identify or create human antibodies with defined tropisms that can be used therapeutically. In the final section, the potential use of display phages and combinatorial chemistry for the identification and development of cancer vaccines and therapeutics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramson R (2018) Overview of targeted therapies for cancer. My Cancer Genome https://www.mycancergenome.org/content/molecular-medicine/overview-of-targeted-therapies-for-cancer. (Updated May 25)

  • Adams GP et al (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750–4755

    CAS  PubMed  Google Scholar 

  • Afshar S, Asai T, Morrison SL (2009) Humanized ADEPT comprised of an engineered human purine nucleoside phosphorylase and a tumor targeting peptide for treatment of cancer. Mol Cancer Ther 8:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghebati-Maleki L et al (2016) Phage display as a promising approach for vaccine development. J Biomed Sci 23:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic cancer targeting peptides. Biopolymers 66:184–199

    Article  CAS  PubMed  Google Scholar 

  • Aina OH, Marik J, Liu R, Lau DH, Lam KS (2005) Identification of novel targeting peptides for human ovarian cancer cells using “one-bead one-compound” combinatorial libraries. Mol Cancer Ther 4:806–813

    Article  CAS  PubMed  Google Scholar 

  • Aina OH, Liu R, Sutcliffe JL, Marik J, Pan CX, Lam KS (2007) From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 4:631–651

    Article  CAS  PubMed  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    Article  CAS  PubMed  Google Scholar 

  • An Z (2010) Monoclonal antibodies – a proven and rapidly expanding therapeutic modality for human diseases. Protein Cell 1:319–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashby M, Petkova A, Gani J et al (2017) Use of peptide libraries for identification and optimization of novel antimicrobial peptides. Curr Top Med Chem 17:537–553

    Article  CAS  PubMed  Google Scholar 

  • Bapat P (2015) Cytotoxic effects of selenium conjugated trastuzumab on HER2+ breast cancer cell lines. Ph.D. disertation for Texas Tech University. https://ttuir.tdl.org/handle/2346/62366

  • Barbu EM, Cady KC, Hubby B (2016) Phage therapy in the era of synthetic biology. Cold Spring Harb Perspect Biol 8(10):pii: a023879

    Article  CAS  Google Scholar 

  • Baselga J et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119

    Article  CAS  PubMed  Google Scholar 

  • Bastien N, Trudel M, Simard C (1997) Protective immune responses induced by the immunization of mice with a recombinant bacteriophage displaying an epitope of the human respiratory syncytial virus. Virology 234:118–122

    Article  CAS  PubMed  Google Scholar 

  • Bazan J, Calkosinski I, Gamian A (2012) Phage display – a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccines Immunother 8:1817–1828

    Article  CAS  Google Scholar 

  • Berezov A, Zhang H-T, Greene MI, Murali R (2001) Biacore analysis of rationally designed anti-HER2 exocyclic mimetics of antibodies. BiaJournal 1:4–5

    Google Scholar 

  • Bonilla N, Rojas MI, Netto FCG et al (2016) Phage on tap – a quick and efficient protocol for the preparation of bacteriophage library stocks. PeerJ 4:e2261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonvin P, Power C, Proudfoot A, Dunn S (2016) Mutagenesis by phage display. Methods Enzymol 570:187–205

    Article  CAS  PubMed  Google Scholar 

  • Borghouts C, Kunz C, Groner B (2005) Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci 11:713–726

    Article  CAS  PubMed  Google Scholar 

  • Bradbury AR, Sidhu S, Dubel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brissette R, Prendergast JK, Goldstein NI (2006) Identification of cancer targets and therapeutics using phage display. Curr Opin Drug Discov Dev 9:363–369

    CAS  Google Scholar 

  • Cai C et al (2016) A specific RAGE-binding peptide biopanning from phage display random peptide library that ameliorates symptoms in amyloid beta peptide-mediated neuronal disorder. Appl Microbiol Biotechnol 100:825–835

    Article  CAS  PubMed  Google Scholar 

  • Caldeira JC, Medford A, Kines RC et al (2010) Immunogenic display of diverse peptides, including a broadly cross-type neutralizing human papillomavirus L2 epitope, on virus-like particles of the RNA bacteriophage PP7. Vaccine 28:4384–4393

    Article  CAS  PubMed Central  Google Scholar 

  • Cao YC, Shi QC, Ma JY et al (2005) Vaccination against very virulent infectious bursal disease virus using recombinant T4 bacteriophage displaying viral protein VP2. Acta Biochim 37:657–664

    CAS  Google Scholar 

  • Cardo-Vila M, Arap W, Pasqualini R (2003) Alpha v beta 5 integrin-dependent programmed cell death triggered by a peptide mimic of annexin V. Mol Cell 11:1151–1162

    Article  CAS  PubMed  Google Scholar 

  • Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129

    Article  CAS  PubMed  Google Scholar 

  • Casey JL, Coley AM, Street G, Parisi K, Devine PL, Foley M (2006) Peptide mimotopes selected from a random peptide library for diagnosis of Epstein-Barr virus infection. J Clin Microbiol 44:764–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charalambous BM, Feavers IM (2001) Mimotope vaccines. J Med Microbiol 50:937–939

    Article  Google Scholar 

  • Chaudiere J, Courtin O, Leclaire J (1992) Glutathione oxidase activity of selenocystamine: a mechanistic study. Arch Biochem Biophys 296:328–336

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Spallholz JE (1995) Cytolysis of human erythrocytes by a covalent antibody-selenium immunoconjugate. Free Radic Biol Med 19:713–724

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Scala G, Quinto I et al (2001) Protection of rhesus macaques against disease progression from pathogenic SHIV-89.6PD by vaccination with phage-displayed HIV-1 epitopes. Nat Med 7:1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wang L, Jiang S et al (2017) Synthetic genomes: from DNA synthesis to genome design. Angew Chem Int Ed 57:1748–1756

    Google Scholar 

  • Cho MJ, Juliano R (1996) Macromolecular versus small-molecule therapeutics: drug discovery, development and clinical considerations. Trends Biotechnol 14:153–158

    Article  CAS  PubMed  Google Scholar 

  • Clark JR, March JB (2004a) Bacterial viruses as human vaccines. Expert Rev Vaccines 3:463–476

    Article  CAS  PubMed  Google Scholar 

  • Clark JR, March JB (2004b) Bacteriophage-mediated nucleic acid immunisation. FEMS Immunol Med Microbiol 40:21–26

    Article  CAS  PubMed  Google Scholar 

  • Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24:212–218

    Article  CAS  PubMed  Google Scholar 

  • Clark JR, Bartley K, Jepson CD et al (2011) Comparison of a bacteriophage-delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B. FEMS Immunol Med Microbiol 61:197–204

    Article  CAS  PubMed  Google Scholar 

  • De Berardinis P, Sartorius R, Fanutti C et al (2000) Phage display of peptide epitopes from HIV-1 elicits strong cytolytic responses. Nat Biotechnol 18:873–876

    Article  PubMed  CAS  Google Scholar 

  • De Berardinis P, Sartorius R, Caivano A et al (2003) Use of fusion proteins and procaryotic display systems for delivery of HIV-1 antigens: development of novel vaccines for HIV-1 infection. Curr HIV Res 1:441–446

    Article  PubMed  Google Scholar 

  • De La Cruz VF, Lal AA, McCutchan TF (1988) Immunogenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage. J Biol Chem 263:4318–4322

    PubMed  Google Scholar 

  • Delmastro P, Meola A, Monaci P et al (1997) Immunogenicity of filamentous phage displaying peptide mimotopes after oral administration. Vaccine 15:1276–1285

    Article  CAS  PubMed  Google Scholar 

  • Demangel C, Lafaye P, Mazie JC (1996) Reproducing the immune response against the Plasmodium vivax merozoite surface protein 1 with mimotopes selected from a phage-displayed peptide library. Mol Immunol 33:909–916

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Wang L, You X et al (2018) Advances in the T7 phage display system (Review). Mol Med Rep 17:714–720

    CAS  PubMed  Google Scholar 

  • Derda R, Tang SK, Li SC, Ng S, Matochko W, Jafari MR (2011) Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16:1776–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshayes K (2005) Exploring protein–protein interactions using peptide libraries displayed on phage. In: Phage display in biotechnology and drug discovery. CRC Press, Boca Raton, pp 275–302

    Google Scholar 

  • Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249:404–406

    Article  CAS  PubMed  Google Scholar 

  • Di Giovine M, Salone B, Martina Y et al (2001) Binding properties, cell delivery, and gene transfer of adenoviral penton base displaying bacteriophage. Virology 282:102–112

    Article  PubMed  CAS  Google Scholar 

  • di Marzo Veronese F, Willis AE, Boyer-Thompson C et al (1994) Structural mimicry and enhanced immunogenicity of peptide epitopes displayed on filamentous bacteriophage. The V3 loop of HIV-1 gp120. J Mol Biol 243:167–172

    Article  PubMed  Google Scholar 

  • Domingo-Calap P, Georgel P, Bahram S (2016) Back to the future: bacteriophages as promising therapeutic tools. HLA 87:133–140. https://doi.org/10.1111/tan.12742

    Article  CAS  PubMed  Google Scholar 

  • Dominik PK, Kossiakoff AA (2015) Phage display selections for affinity reagents to membrane proteins in nanodiscs. Methods Enzymol 557:219–245

    Article  CAS  PubMed  Google Scholar 

  • Dunn IS (1996) Mammalian cell binding and transfection mediated by surface-modified bacteriophage lambda. Biochimie 78:856–861

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimizadeh W, Rajabibazl M (2014) Bacteriophage vehicles for phage display: biology, mechanism, and application. Curr Microbiol 69:109–120

    Article  CAS  PubMed  Google Scholar 

  • Efimov VP, Nepluev IV, Mesyanzhinov VV (1995) Bacteriophage T4 as a surface display vector. Virus Genes 10:173–177

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Wang G, Yang Q et al (2005) The potential of phage display virions expressing malignant tumor specific antigen MAGE-A1 epitope in murine model. Vaccine 23:4860–4866

    Article  CAS  PubMed  Google Scholar 

  • Fantin VR, Berardi MJ, Babbe H, Michelman MV, Manning CM, Leder P (2005) A bifunctional targeted peptide that blocks HER-2 tyrosine kinase and disables mitochondrial function in HER-2-positive carcinoma cells. Cancer Res 65:6891–6900

    Article  CAS  PubMed  Google Scholar 

  • Felici F, Castagnoli L, Musacchio A, Jappelli R, Cesareni G (1991) Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J Mol Biol 222:301–310

    Article  CAS  PubMed  Google Scholar 

  • Ferrara F, Naranjo LA, Kumar S, Gaiotto T, Mukundan H, Swanson B, Bradbury AR (2012) Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker. PLoS One 7:e49535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finlay WJ, Bloom L, Grant J, Franklin E, Shuilleabhain DN, Cunningham O (2017) Phage display: a powerful technology for the generation of high-specificity affinity reagents from alternative immune sources. Methods Mol Biol 1485:85–99

    Article  CAS  PubMed  Google Scholar 

  • Fisch I, Kontermann RE, Finnern R, Hartley O, Soler-Gonzalez AS, Griffiths AD, Winter G (1996) A strategy of exon shuffling for making large peptide repertoires displayed on filamentous bacteriophage. Proc Natl Acad Sci U S A 93:7761–7766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  • Fralick JA, Chadha-Mohanty P, Li G (2008) Phage display and its application for the detection and therapeutic intervention of biological threat agents. In: Advances in biological and chemical terrorism countermeasures. CRC Press, Boca Raton, pp 186–208

    Google Scholar 

  • Frei JC, Lai JR (2016) Protein and antibody engineering by phage display. Methods Enzymol 580:45–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenkel D, Dori M, Solomon B (2004) Generation of anti-beta-amyloid antibodies via phage display technology. Vaccine 22:2505–2508

    Article  CAS  PubMed  Google Scholar 

  • Frenzel A, Roskos L, Klakamp S, Liang M, Arends R, Green L (2014) Antibody affinity. Wiley, Weinheim

    Book  Google Scholar 

  • Fridovich I (1983) Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23:239–257

    Article  CAS  PubMed  Google Scholar 

  • Fujii R, Kitaoka M, Hayashi K (2004) One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res 32:e145

    Article  PubMed  PubMed Central  Google Scholar 

  • Furka A, Sebestyen F, Asgedom M, Dibo G (1991) General method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res 37:487–493

    Article  CAS  PubMed  Google Scholar 

  • Gamkrelidze M, Dąbrowska K (2014) T4 bacteriophage as a phage display platform. Arch Microbiol 196:473–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geysen HM, Rodda SJ, Mason TJ (1986) A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol 23:709–715

    Article  CAS  PubMed  Google Scholar 

  • Ghaemi A, Soleimanjahi H, Gill P et al (2010) Recombinant lambda-phage nanobioparticles for tumor therapy in mice models. Genet Vaccines Ther 8:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghaemi A, Soleimanjahi H, Gill P et al (2011) Protection of mice by a lambda-based therapeutic vaccine against cancer associated with human papillomavirus type 16. Intervirology 54:105–112

    Article  CAS  PubMed  Google Scholar 

  • Gnanasekar M, Rao KV, He YX et al (2004) Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi. Infect Immun 72:4707–4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez AM, Leadbeater W, Podvin S et al (2010) Epidermal growth factor targeting of bacteriophage to the choroid plexus for gene delivery to the central nervous system via cerebrospinal fluid. Brain Res 1359:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez AM, Leadbeater WE, Burg M et al (2011) Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system. BMC Neurosci 12:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Cano P, Gamage LNA, Marciniuk K et al (2017) Lambda display phage as a mucosal vaccine delivery vehicle for peptide antigens. Vaccine 35:7256–7263

    Article  PubMed  CAS  Google Scholar 

  • Goodman A (2019) Perjeta: a new option for patients with HER2-positive metastatic breast cancer. Am Health Drug Benefits 6:72–76

    Google Scholar 

  • Grabowska AM, Jennings R, Laing P et al (2000) Immunisation with phage displaying peptides representing single epitopes of the glycoprotein G can give rise to partial protective immunity to HSV-2. Virology 269:47–53

    Article  CAS  PubMed  Google Scholar 

  • Greenwood J, Willis AE, Perham RN (1991) Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol 220:821–827

    Article  CAS  PubMed  Google Scholar 

  • Gron H, Hyde-DeRuyscher R (2000) Peptides as tools in drug discovery. Curr Opin Drug Discov Dev 3:636–645

    CAS  Google Scholar 

  • Gu Y, Li J, Zhu X et al (2008) Trichinella spiralis: characterization of phage-displayed specific epitopes and their protective immunity in BALB/c mice. Exp Parasitol 118:66–74

    Article  CAS  PubMed  Google Scholar 

  • Guardiola J, De BP, Sartorius R et al (2001) Phage display of epitopes from HIV-1 elicits strong cytolytic responses in vitro and in vivo. Adv Exp Med Biol 495:291–298

    Article  CAS  PubMed  Google Scholar 

  • Guhsl EE, Hofstetter G, Ebner C, Hemmer W, Breiteneder H, Radauer C (2014) Random mutagenesis and phage display technology as a tool for identifying IgE epitopes of the birch pollen allergen Bet v 1. Clin Transl Allergy 4:O5

    Article  PubMed Central  Google Scholar 

  • Gupta A, Onda M, Pastan I et al (2003) High-density functional display of proteins on bacteriophage lambda. J Mol Biol 334:241–254

    Article  CAS  PubMed  Google Scholar 

  • Hagens S, Bläsi U (2003) Genetically modified filamentous phage as bactericidal agents: a pilot study. Lett Appl Microbiol 37:318–323

    Article  CAS  PubMed  Google Scholar 

  • Hajitou A (2010) Targeted systemic gene therapy and molecular imaging of cancer contribution of the vascular-targeted AAVP vector. Adv Genet 69:65–82

    Article  CAS  PubMed  Google Scholar 

  • Hajitou A, Trepel M, Lilley CE et al (2006) A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125:385–398

    Article  CAS  PubMed  Google Scholar 

  • Hajitou A, Rangel R, Trepel M et al (2007) Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat Protoc 2:523–531

    Article  CAS  PubMed  Google Scholar 

  • Hammers CM, Stanley JR (2014) Antibody phage display: technique and applications. J Invest Dermatol 134:1–5

    Article  PubMed  CAS  Google Scholar 

  • Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S (2013) Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today 18:1144–1157

    Article  CAS  PubMed  Google Scholar 

  • Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338

    Article  CAS  PubMed  Google Scholar 

  • Harbeck N et al (2013) HER2 dimerization inhibitor pertuzumab-mode of action and clinical data in breast cancer. Breast Care 8:49–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart SL, Knight AM, Harbottle RP et al (1994) Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide. J Biol Chem 269:12468–12474

    CAS  PubMed  Google Scholar 

  • Hayes S, Gamage LNA, Hayes C (2010) Dual expression system for assembling phage lambda display particle (LDP) vaccine to porcine Circovirus 2 (PCV2). Vaccine 28:6789–6799

    Article  CAS  PubMed  Google Scholar 

  • Henry KA, Arbabi-Ghahroudi M, Scott JK (2015) Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 6:755

    PubMed  PubMed Central  Google Scholar 

  • Hoess RH (2002) Bacteriophage lambda as a vehicle for peptide and protein display. Curr Pharm Biotechnol 3:23–28

    Article  CAS  PubMed  Google Scholar 

  • Hruby VJ (2002) Designing peptide receptor agonists and antagonists. Nat Rev Drug Discov 1:847–858

    Article  CAS  PubMed  Google Scholar 

  • Hsiung PL et al (2008) Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 14:454–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J et al (2012a) MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Res 40:D271–D277

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Fang P, Kay BK (2012b) Improvements to the Kunkel mutagenesis protocol for constructing primary and secondary phage-display libraries. Methods 58:10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudis CA (2007) Trastuzumab – mechanism of action and use in clinical practice. N Engl J Med 357:39–51. https://doi.org/10.1056/NEJMra043186

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz E, Stancovski I, Sela M, Yarden Y (1995) Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake. Proc Natl Acad Sci U S A 92:3353–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ja WW, Roberts RW (2005) G-protein-directed ligand discovery with peptide combinatorial libraries. Trends Biochem Sci 30:318–324

    Article  CAS  PubMed  Google Scholar 

  • Jennings GT, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol Chem 389:521–536

    Article  CAS  PubMed  Google Scholar 

  • Jestin JL, Volioti G, Winter G (2001) Improving the display of proteins on filamentous phage. Res Microbiol 152:187–191

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Abu-Shilbayeh L, Rao VB (1997) Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. Infect Immun 65:4770–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce JG et al (2008) An oligosaccharide-based HIV-1 2G12 mimotope vaccine induces carbohydrate-specific antibodies that fail to neutralize HIV-1 virions. Proc Natl Acad Sci U S A 105:15684–15689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junttila TT et al (2009) Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15:429–440

    Article  CAS  PubMed  Google Scholar 

  • Keefe DL (2002) Trastuzumab-associated cardiotoxicity. Cancer 95:1592–1600

    Article  CAS  PubMed  Google Scholar 

  • Kilcher S, Loessner MJ (2019) Engineering bacteriophages as versatile biologics. Trends Microbiol 27:355–367

    Article  CAS  PubMed  Google Scholar 

  • Kleiner M, Hooper LV, Duerkop BA (2015) Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genomics 16:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knittelfelder R, Riemer AB, Jensen-Jarolim E (2009) Mimotope vaccination – from allergy to cancer. Expert Opin Biol Ther 9:493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokoszka ME, Kay BK (2015) Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries and alanine scanning. Methods Mol Biol 1248:173–188

    Article  CAS  PubMed  Google Scholar 

  • Kozlovska TM, Cielens I, Dreilinna D et al (1993) Recombinant RNA phage Q beta capsid particles synthesized and self-assembled in Escherichia coli. Gene 137:133–137

    Article  CAS  PubMed  Google Scholar 

  • Kozlovska TM, Cielens I, Vasiljeva I et al (1996) RNA phage Q beta coat protein as a carrier for foreign epitopes. Intervirology 39:9–15

    Article  CAS  PubMed  Google Scholar 

  • Krom RJ, Bhargava P, Lobritz MA, Collins JJ (2015) Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett 15:4808–4813

    Article  CAS  PubMed  Google Scholar 

  • Krumpe LR, Mori T (2006) The use of phage-displayed peptide libraries to develop tumor-targeting drugs. Int J Pept Res Ther 12:79–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumpe LR, Mori T (2007) Potential of phage-displayed peptide library technology to identify functional targeting peptides. Expert Opin Drug Discovery 2:525

    Article  CAS  Google Scholar 

  • Krumpe LR et al (2006) T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries. Proteomics 6:4210–4222

    Article  CAS  PubMed  Google Scholar 

  • Ladner RC, Sato AK, Gorzelany J, de Souza M (2004) Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov Today 9:525–529

    Article  CAS  PubMed  Google Scholar 

  • Lampson LA (2011) Monoclonal antibodies in neuro-oncology: getting past the blood–brain barrier. MAbs 3:153–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Larocca D, Witte A, Johnson W et al (1998) Targeting bacteriophage to mammalian cell surface receptors for gene delivery. Hum Gene Ther 9:2393–2399

    Article  CAS  PubMed  Google Scholar 

  • Larocca D, Kassner PD, Witte A et al (1999) Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J 13:727–734

    Article  CAS  PubMed  Google Scholar 

  • Larocca D, Jensen-Pergakes K, Burg MA, Baird A (2001) Receptor-targeted gene delivery using multivalent phagemid particles. Mol Ther 3:476–484

    Article  CAS  PubMed  Google Scholar 

  • Lee-Hoeflich ST et al (2008) A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res 68:5878–5887

    Article  CAS  PubMed  Google Scholar 

  • Lesinski GB, Westerink MA (2001) Novel vaccine strategies to T-independent antigens. J Microbiol Methods 47:135–149

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Shivachandra SB, Zhang Z, Rao VB (2007) Assembly of the small outer capsid protein, Soc, on bacteriophage T4: a novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid. J Mol Biol 370:1006–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindqvist BH, Naderi S (1995) Peptide presentation by bacteriophage P4. FEMS Microbiol Rev 17:33–39

    Article  CAS  PubMed  Google Scholar 

  • Loktev VB, Ilyichev AA, Eroshkin AM et al (1996) Design of immunogens as components of a new generation of molecular vaccines. J Biotechnol 44:129–137

    Article  CAS  PubMed  Google Scholar 

  • Lundin K, Samuelsson A, Jansson M et al (1996) Peptides isolated from random peptide libraries on phage elicit a neutralizing anti-HIV-1 response: analysis of immunological mimicry. Immunology 89:579–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdougall IC, Rossert J, Casadevall N, Stead RB, Duliege AM, Froissart M, Eckardt KU (2009) A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N Engl J Med 361:1848–1855

    Article  CAS  PubMed  Google Scholar 

  • Makela O, Sarvas H, Seppala I (1980) Immunological methods based on antigen-coupled bacteriophages. J Immunol Methods 37:213–223

    Article  CAS  PubMed  Google Scholar 

  • Manoutcharian K, Díaz-Orea A, Gevorkian G et al (2004) Recombinant bacteriophage-based multiepitope vaccine against Taenia solium pig cysticercosis. Vet Immunol Immunopathol 99:11–24

    Article  CAS  PubMed  Google Scholar 

  • Mansfield KL, Johnson N, Fooks AR (2004) Identification of a conserved linear epitope at the N terminus of the rabies virus glycoprotein. J Gen Virol 85:3279–3283

    Article  CAS  PubMed  Google Scholar 

  • March JB (2002) Bacteriophage-mediated immunisation. WO 02/076498

    Google Scholar 

  • March JB, Clark JR (2002) Whole bacteriophage λ particles as a DNA vaccine delivery vehicle. Genes Immun:44–46. Abstracts from DNA vaccines conference 2002

    Google Scholar 

  • March JB, Clark JR, Jepson CD (2004) Genetic immunisation against hepatitis B using whole bacteriophage particles. Vaccine 22:1666–1671

    Article  CAS  PubMed  Google Scholar 

  • March JB, Jepson CD, Clark JR et al (2006) Phage library screening for the rapid identification and in vivo testing of candidate genes for a DNA vaccine against Mycoplasma mycoides subsp. mycoides small colony biotype. Infect Immun 74:167–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvin DA, Hohn B (1969) Filamentous bacterial viruses. Bacteriol Rev 33:172–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastico RA, Talbot SJ, Stockley PG (1993) Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J Gen Virol 74(Pt 4):541–548

    Article  CAS  PubMed  Google Scholar 

  • Masuda K, Richter M, Song X, Berezov A, Murali R, Greene M, Zhang H (2006) AHNP-streptavidin: a tetrameric bacterially produced antibody surrogate fusion protein against p185 her2/neu. Oncogene 25:7740

    Article  CAS  PubMed  Google Scholar 

  • Matochko WL, Ng S, Jafari MR, Romaniuk J, Tang SK, Derda R (2012) Uniform amplification of phage display libraries in monodisperse emulsions. Methods 58:18–27

    Article  CAS  PubMed  Google Scholar 

  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  CAS  PubMed  Google Scholar 

  • McConnell SJ, Uveges AJ, Spinella DG (1995) Comparison of plate versus liquid amplification of M13 phage display libraries. BioTechniques 18:803–804, 806

    CAS  PubMed  Google Scholar 

  • Meola A, Delmastro P, Monaci P et al (1995) Derivation of vaccines from mimotopes. Immunologic properties of human hepatitis B virus surface antigen mimotopes displayed on filamentous phage. J Immunol 154:3162–3172

    CAS  PubMed  Google Scholar 

  • Mikawa YG, Maruyama IN, Brenner S (1996) Surface display of proteins on bacteriophage lambda heads. J Mol Biol 262:21–30

    Article  CAS  PubMed  Google Scholar 

  • Miller JL, Lyle VA (1996) Mimotope/anti-mimotope probing of structural relationships in platelet glycoprotein Ib alpha. Proc Natl Acad Sci U S A 93:3565–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minenkova OO, Ilyichev AA, Kishchenko GP, Petrenko VA (1993) Design of specific immunogens using filamentous phage as the carrier. Gene 128:85–88

    Article  CAS  PubMed  Google Scholar 

  • Mitri Z, Constantine T, O’Regan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 2012:743193

    PubMed  PubMed Central  Google Scholar 

  • Model P, Russel M (1988) Filamentous bacteriophage. In: The bacteriophages. Plenum, New York

    Google Scholar 

  • Moon JS, Kim WG, Kim C, Park GT, Heo J, Yoo SY, Oh JW (2015) M13 bacteriophage-based self-assembly structures and their functional capabilities. Mini-Rev Org Chem 12:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradpour Z, Sepehrizadeh Z, Rahbarizadeh F et al (2009) Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli. FEMS Microbiol Lett 296:67–71

    Article  CAS  PubMed  Google Scholar 

  • Morales J, Martinez JJ, Manoutcharian K et al (2008) Inexpensive anti-cysticercosis vaccine: S3Pvac expressed in heat inactivated M13 filamentous phage proves effective against naturally acquired Taenia solium porcine cysticercosis. Vaccine 26:2899–2905

    Article  CAS  PubMed  Google Scholar 

  • Mori T (2004) Cancer-specific ligands identified from screening of peptide-display libraries. Curr Pharm Des 10:2335–2343

    Article  CAS  PubMed  Google Scholar 

  • Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B (2006) Phage display in the study of infectious diseases. Trends Microbiol 14:141–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murali R, Greene MI (2012) Structure based antibody-like peptidomimetics. Pharmaceuticals 5:209–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahta R, Hung MC, Esteva FJ (2004) The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 64:2343–2346

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H et al (2008) Development of HER2-antagonistic peptides as novel anti-breast cancer drugs by in silico methods. Breast Cancer 15:65–72

    Article  PubMed  Google Scholar 

  • Nakajima H, Mizuta N, Sakaguchi K, Fujiwara I, Yoshimori A, Magae J, Tanuma S (2010) Enhancement of paclitaxel-induced apoptosis in HER2-overexpressing human breast cancer cells by a pertuzumab mimetic peptide, HRAP. J Biosci Bioeng 110:250–253

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi M, Eguchi A, Akuta T et al (2003) Basic peptides as functional components of non-viral gene transfer vehicles. Curr Protein Pept Sci 4:141–150

    Article  CAS  PubMed  Google Scholar 

  • Nam KT et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Article  CAS  PubMed  Google Scholar 

  • Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767

    Article  CAS  PubMed  Google Scholar 

  • Nicastro J, Sheldon K, Slavcev RA (2014) Bacteriophage lambda display systems: developments and applications. Appl Microbiol Biotechnol 98:2853–2866

    Article  CAS  PubMed  Google Scholar 

  • Nixon AE, Sexton DJ, Ladner RC (2014) Drugs derived from phage display: from candidate identification to clinical practice. MAbs 6:73–85

    Article  PubMed  Google Scholar 

  • O’Neil KT, Hoess RH (1995) Phage display: protein engineering by directed evolution. Curr Opin Struct Biol 5:443–449

    Article  PubMed  Google Scholar 

  • O’Shannessy DJ, Brigham-Burke M, Peck K (1992) Immobilization chemistries suitable for use in the BIAcore surface plasmon resonance detector. Anal Biochem 205:132–136

    Article  PubMed  Google Scholar 

  • Omidfar K, Daneshpour M (2015) Advances in phage display technology for drug discovery. Expert Opin Drug Discovery 10:651–669

    Article  CAS  Google Scholar 

  • Pande J, Szewczyk MM, Grover AK (2010) Phage display: concept, innovations, applications and future. Biotechnol Adv 28:849–858

    Article  CAS  PubMed  Google Scholar 

  • Park B-W et al (2000) Rationally designed anti-HER2/neu peptide mimetic disables p185 HER2/neu tyrosine kinases in vitro and in vivo. Nat Biotechnol 18:194

    Article  CAS  PubMed  Google Scholar 

  • Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    Article  CAS  PubMed  Google Scholar 

  • Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6:559–565

    Article  CAS  PubMed  Google Scholar 

  • Pavoni E, Vaccaro P, Pucci A et al (2004) Identification of a panel of tumor-associated antigens from breast carcinoma cell lines, solid tumors and testis cDNA libraries displayed on lambda phage. BMC Cancer 4:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peabody DS, Manifold-Wheeler B, Medford A et al (2008) Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol 380:252–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peachman KK, Li Q, Matyas GR et al (2011) Anthrax vaccine antigen-adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores. Clin Vaccine Immunol 19(1):11–16

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Zhang Y, Mitchell WJ, Zhang G (2012) Development of a lipopolysaccharide-targeted peptide mimic vaccine against Q fever. J Immunol 189:4909–4920

    Article  CAS  PubMed  Google Scholar 

  • Perham RN, Terry TD, Willis AE et al (1995) Engineering a peptide epitope display system on filamentous bacteriophage. FEMS Microbiol Rev 17:25–31

    Article  CAS  PubMed  Google Scholar 

  • Petrenko VA, Smith GP (2005) Vectors and modes of display. In: Phage display in biotechnology and drug discovery, vol 3. Taylor & Francis, Boca Raton, pp 63–110

    Chapter  Google Scholar 

  • Piersanti S, Cherubini G, Martina Y et al (2004) Mammalian cell transduction and internalization properties of lambda phages displaying the full-length adenoviral penton base or its central domain. J Mol Med 82:467–476

    Article  CAS  PubMed  Google Scholar 

  • Poul MA, Marks JD (1999) Targeted gene delivery to mammalian cells by filamentous bacteriophage. J Mol Biol 288:203–211

    Article  CAS  PubMed  Google Scholar 

  • Qi H, Lu H, Qiu HJ, Petrenko V, Liu A (2012) Phagemid vectors for phage display: properties, characteristics and construction. J Mol Biol 417:129–143

    Article  CAS  PubMed  Google Scholar 

  • Qiu XQ, Wang H, Cai B, Wang LL, Yue ST (2007) Small antibody mimetics comprising two complementarity-determining regions and a framework region for tumor targeting. Nat Biotechnol 25:921–929

    Article  CAS  PubMed  Google Scholar 

  • Rader C (2015) Chemical biology: how to minimalize antibodies. Nature 518:38–39

    Article  CAS  PubMed  Google Scholar 

  • Rahbarnia L, Farajnia S, Babaei H et al (2017) Evolution of phage display technology: from discovery to application. J Drug Target 25:216–224

    Article  CAS  PubMed  Google Scholar 

  • Rakonjac J, Bennett NJ, Spagnuolo J et al (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13:51–76

    CAS  PubMed  Google Scholar 

  • Rao M, Peachman KK, Li Q et al (2011) Highly effective generic adjuvant systems for orphan or poverty-related vaccines. Vaccine 29:873–877

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen UB, Schreiber V, Schultz H, Mischler F, Schughart K (2002) Tumor cell-targeting by phage-displayed peptides. Cancer Gene Ther 9:606–612

    Article  CAS  PubMed  Google Scholar 

  • Raychaudhuri S, Rock KL (1998) Fully mobilizing host defense: building better vaccines. Nat Biotechnol 16:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Reichert J, Pechon P, Tartar A, Dunn M (2010) Development trends for peptide therapeutics. Peptide Therapeutics Foundation (PTF), San Diego

    Google Scholar 

  • Reid ME, Stratton MS, Lillico AJ, Fakih M, Natarajan R, Clark LC, Marshall JR (2004) A report of high-dose selenium supplementation: response and toxicities. J Trace Elem Med Biol 18:69–74

    Article  CAS  PubMed  Google Scholar 

  • Ren ZJ, Tian CJ, Zhu QS et al (2008) Orally delivered foot-and-mouth disease virus capsid protomer vaccine displayed on T4 bacteriophage surface: 100% protection from potency challenge in mice. Vaccine 26:1471–1481

    Article  CAS  PubMed  Google Scholar 

  • Ren SX, Ren ZJ, Zhao MY et al (2009) Antitumor activity of endogenous mFlt4 displayed on a T4 phage nanoparticle surface. Acta Pharmacol Sin 30:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritz J, Schlossman SF (1982) Utilization of monoclonal antibodies in the treatment of leukemia and lymphoma. Blood 59:1–11

    Article  CAS  PubMed  Google Scholar 

  • Rodi DJ, Mandava S, Makowski L (2005) Filamentous bacteriophage structure and biology. In: Phage display in biotechnology and drug discovery. CRC Press, Boca Raton, pp 21–82

    Google Scholar 

  • Rojas G, Tundidor Y, Infante YC (2014) High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface. MAbs 6:1368–1376

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowley MJ, O’Connor K, Wijeyewickrema L (2004) Phage display for epitope determination: a paradigm for identifying receptor–ligand interactions. Biotechnol Annu Rev 10:151–188

    Article  CAS  PubMed  Google Scholar 

  • Sagona AP, Grigonyte AM, MacDonald PR, Jaramillo A (2016) Genetically modified bacteriophages. Integr Biol 8:465–474

    Article  Google Scholar 

  • Samoylova TI, Braden TD, Spencer JA, Bartol FF (2017) Immunocontraception: filamentous bacteriophage as a platform for vaccine development. Curr Med Chem 24:3907–3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartorius R, Pisu P, D’Apice L et al (2008) The use of filamentous bacteriophage fd to deliver MAGE-A10 or MAGE-A3 HLA-A2-restricted peptides and to induce strong antitumor CTL responses. J Immunol 180:3719–3728

    Article  CAS  PubMed  Google Scholar 

  • Sathaliyawala T, Rao M, Maclean DM et al (2006) Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: a novel in vitro approach to construct multicomponent HIV vaccines. J Virol 80:7688–7698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scala G, Chen X, Liu W et al (1999) Selection of HIV-specific immunogenic epitopes by screening random peptide libraries with HIV-1-positive sera. J Immunol 162:6155–6161

    CAS  PubMed  Google Scholar 

  • Schneider JW, Chang AY, Garratt A (2002) Trastuzumab cardiotoxicity: speculations regarding pathophysiology and targets for further study. Semin Oncol 29:22–28

    Article  CAS  PubMed  Google Scholar 

  • Scott AM, Allison JP, Wolchok JD (2012) Monoclonal antibodies in cancer therapy. Cancer Immun 12:14

    PubMed  PubMed Central  Google Scholar 

  • Sergeeva A, Kolonin MG, Molldrem JJ et al (2006) Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 58:1622–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharav T, Wiesmuller KH, Walden P (2007) Mimotope vaccines for cancer immunotherapy. Vaccine 25:3032–3037

    Article  CAS  PubMed  Google Scholar 

  • Shivachandra SB, Rao M, Janosi L et al (2006) In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: a strategy for efficient display of large full-length proteins. Virology 345:190–198

    Article  CAS  PubMed  Google Scholar 

  • Shivachandra SB, Li Q, Peachman KK et al (2007) Multicomponent anthrax toxin display and delivery using bacteriophage T4. Vaccine 25:1225–1235

    Article  CAS  PubMed  Google Scholar 

  • Silverman J et al (2005) Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat Biotechnol 23:1556–1561

    Article  CAS  PubMed  Google Scholar 

  • Skamel C, Aller SG, Bopda Waffo A (2018) Correction: in vitro evolution and affinity-maturation with coliphage Qbeta display. PLoS One 13:e0199953

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  • Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410

    Article  CAS  PubMed  Google Scholar 

  • Sperinde JJ, Choi SJ, Szoka FC Jr (2001) Phage display selection of a peptide DNase II inhibitor that enhances gene delivery. J Gene Med 3:101–108

    Article  CAS  PubMed  Google Scholar 

  • Stern M, Herrmann R (2005) Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol 54:11–29

    Article  CAS  PubMed  Google Scholar 

  • Sternberg N, Hoess RH (1995) Display of peptides and proteins on the surface of bacteriophage lambda. Proc Natl Acad Sci U S A 92:1609–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 146:264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takakura Y, Hashida M (1996) Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm Res 13:820–831

    Article  CAS  PubMed  Google Scholar 

  • Tan M et al (2006) Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Res 66:3764–3772

    Article  CAS  PubMed  Google Scholar 

  • Tang KH, Yusoff K, Tan WS (2009) Display of hepatitis B virus PreS1 peptide on bacteriophage T7 and its potential in gene delivery into HepG2 cells. J Virol Methods 159:194–199

    Article  CAS  PubMed  Google Scholar 

  • Tao P, Zhu J, Mahalingam M et al (2018) Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev 145:57–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teng G, Papavasiliou FN (2007) Immunoglobulin somatic hypermutation. Annu Rev Genet 41:107–120

    Article  CAS  PubMed  Google Scholar 

  • Thayer AM (2011) Improving peptides. Chem Eng News 89:13

    Google Scholar 

  • Thie H (2010) Affinity maturation by random mutagenesis and phage display. In: Antibody engineering. Springer, Berlin, pp 397–409

    Chapter  Google Scholar 

  • Thom G et al (2006) Probing a protein-protein interaction by in vitro evolution. Proc Natl Acad Sci U S A 103:7619–7624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10:415–427

    Article  PubMed  Google Scholar 

  • Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012:967347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tissot AC, Renhofa R, Schmitz N et al (2010) Versatile virus-like particle carrier for epitope based vaccines. PLoS One 5:e9809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tong AH et al (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295:321–324

    Article  CAS  PubMed  Google Scholar 

  • Tumban E, Peabody J, Peabody DS, Chackerian B (2011) A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PLoS One 6:e23310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umlauf BJ, McGuire MJ, Brown KC (2015) Introduction of plasmid encoding for rare tRNAs reduces amplification bias in phage display biopanning. BioTechniques 58:81–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12:292–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Gerven N, Greve H, Hernalsteens JP (2008) Presentation of the functional receptor-binding domain of the bacterial adhesin F17a-G on bacteriophage M13. Antonie Van Leeuwenhoek 93:219–226

    Article  PubMed  CAS  Google Scholar 

  • Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC (2012) Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 120:2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    Article  CAS  PubMed  Google Scholar 

  • Vodnik M, Zager U, Strukelj B, Lunder M (2011) Phage display: selecting straws instead of a needle from a haystack. Molecules 16:790–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volcy K, Dewhurst S (2009) Proteasome inhibitors enhance bacteriophage lambda (lambda) mediated gene transfer in mammalian cells. Virology 384:77–87

    Article  CAS  PubMed  Google Scholar 

  • Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9:269–277

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Wu Y, Bian J et al (2001) Induction of hepatitis B virus-specific cytotoxic T lymphocytes response in vivo by filamentous phage display vaccine. Vaccine 19:2918–2923

    Article  CAS  PubMed  Google Scholar 

  • Wang LF, Yu M (2004) Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr Drug Targets 5:1–15

    Article  PubMed  Google Scholar 

  • Wang YS, Fan HJ, Li Y, Shi ZL, Pan Y, Lu CP (2007) Development of a multi-mimotope peptide as a vaccine immunogen for infectious bursal disease virus. Vaccine 25:4447–4455

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Li K, Chen Y et al (2010) Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjug Chem 21:1369–1377

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM (2015) NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 6:368

    PubMed  PubMed Central  Google Scholar 

  • Wei B, Wei Y, Zhang K et al (2009) Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell penetrating peptide. Biomed Pharmacother 63:313–318

    Article  CAS  PubMed  Google Scholar 

  • Westwater C, Kasman LM, Schofield DA et al (2003) Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 47:1301–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis AE, Perham RN, Wraith D (1993) Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. Gene 128:79–83

    Article  CAS  PubMed  Google Scholar 

  • Wrighton NC et al (1996) Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273:458–464

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Tu C, Yu X et al (2007) Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity: a powerful immunological approach. J Virol Methods 139:50–60

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y (2014) Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 351:13–22

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Liu IJ, Lu RM, Wu HC (2016) Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 23:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu H, Bao X, Wang Y et al (2018) Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector. Virol J 15:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashita-Kashima Y, Shu S, Yorozu K, Moriya Y, Harada N (2017) Mode of action of pertuzumab in combination with trastuzumab plus docetaxel therapy in a HER2-positive breast cancer xenograft model. Oncol Lett 14:4197–4205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan J, Liu X, Wang Y et al (2007) Enhancing the potency of HBV DNA vaccines using fusion genes of HBV-specific antigens and the N-terminal fragment of gp96. J Gene Med 9:107–121

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Forrer P, Dauter Z et al (2000) Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD. Nat Struct Biol 7:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Liu Z, Hemida MG, Yang D (2011) Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One 6(6):e21215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Smith GP (1996) Affinity maturation of phage-displayed peptide ligands. Methods Enzymol 267:3–27

    Article  CAS  PubMed  Google Scholar 

  • Yuan B, Schulz P, Liu R, Sierks MR (2006) Improved affinity selection using phage display technology and off-rate based selection. Electron J Biotechnol 9:171–175

    Article  CAS  Google Scholar 

  • Yun S, Lee S, Park JP, Choo J, Lee E (2019) Modification of phage display technique for improved screening of high-affinity binding peptides. J Biotechnol 289:88–92

    Article  CAS  PubMed  Google Scholar 

  • Zanghi CN, Lankes HA, Bradel-Tretheway B et al (2005) A simple method for displaying recalcitrant proteins on the surface of bacteriophage lambda. Nucleic Acids Res 33:1–7

    Article  Google Scholar 

  • Zhang H, Cheng X, Richter M, Greene MI (2006) A sensitive and high-throughput assay to detect low-abundance proteins in serum. Nat Med 12:473

    Article  CAS  PubMed  Google Scholar 

  • Zhang XX, Eden HS, Chen X (2012) Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release 159:2–13

    Article  CAS  PubMed  Google Scholar 

  • Zhong G, Smith GP, Berry J, Brunham RC (1994) Conformational mimicry of a chlamydial neutralization epitope on filamentous phage. J Biol Chem 269:24183–24188

    CAS  PubMed  Google Scholar 

  • Zou Y, Sonderegger I, Lipowsky G et al (2010) Combined vaccination against IL-5 and eotaxin blocks eosinophilia in mice. Vaccine 28:3192–3200

    Article  CAS  PubMed  Google Scholar 

  • Zuercher AW, Miescher SM, Vogel M, Rudolf MP, Stadler MB, Stadler BM (2000) Oral anti-IgE immunization with epitope-displaying phage. Eur J Immunol 30:128–135

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe A. Fralick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fralick, J.A., Clark, J. (2020). Phage Display Technology and the Development of Phage-Based Vaccines. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics