Skip to main content

Biofilm Applications of Bacteriophages

  • Living reference work entry
  • First Online:
Bacteriophages

Abstract

Industrial settings, the food processing industry in particular, have strict sanitation procedures to minimize food product contamination and guarantee that their products are safe to be consumed. Sanitation procedures are routinely used, yet still pathogens are recovered from foods and processing surfaces that may eventually cause foodborne illnesses. Microorganisms have a natural tendency to attach to surfaces – such as food contact surfaces, foods of animal and plant origin, and tubing and equipment, among others – and start forming biofilms, that is, cells are found embedded within a matrix of extracellular polymeric substances.

In this chapter we review fundamental aspects involved in cell adhesion and consequent biofilm formation in food industrial settings and their control and prevention using bacteriophages. The challenges involved in the use of bacteriophages for these applications will also be covered herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abedon ST (2015) Ecology of anti-biofilm agents I: antibiotics versus bacteriophages. Pharmaceuticals (Basel) 8(3):525–558

    Article  CAS  Google Scholar 

  • Abedon ST (2016) Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett 363:fnv246. https://doi.org/10.1093/femsle/fnv246. Epub 6 Jan 2016

    Article  CAS  PubMed  Google Scholar 

  • Abedon ST (2017) Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol 3(2):186–226. https://doi.org/10.3934/microbiol.2017.2.186

    Article  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2018a) Use of phage therapy to treat long-standing, persistent, or chronic bacterial infection. Adv Drug Deliv Rev. In press, pp 1–38

    Google Scholar 

  • Abedon ST (2018b) Bacteriophage-mediated biocontrol of wound infections, and ecological exploitation of biofilms by phages. In: Recent Clinical Techniques, Results, and Research in Wounds. Springer, Cham

    Google Scholar 

  • Annous BA, Smith JL, Fratamico PM (2009) Biofilms in fresh fruit and vegetables. In: Fratamico PM, Annous BA, Gunther NW (eds) Biofilms in the food and beverage industries. CRC Press, Boca Raton, pp 517–535

    Chapter  Google Scholar 

  • Arachchi GJ, Cridge AG, Dias-Wanigasekera BM et al (2013) Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. J Ind Microbiol Biotechnol 40:1105–1116

    Article  CAS  Google Scholar 

  • Arnold JW (2009) Biofilms in poultry processing. In: Fratamico PM, Annous BA, Gunther NW (eds) Biofilms in the food and beverage industries. Woodhead Publishing, Cambridge, UK, pp 455–473

    Chapter  Google Scholar 

  • Atterbury RJ, Connerton PL, Christine ER et al (2003) Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl Environ Microbiol 69:6302–6306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266

    Article  CAS  PubMed  Google Scholar 

  • Beuchat LR (2002) Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect 4:413–423

    Article  PubMed  Google Scholar 

  • Bhattacharjee AS, Choi J, Motlagh AM et al (2015) Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic-resistant bacterial biofilms. Biotechnol Bioeng 112:1644–1654

    Article  CAS  PubMed  Google Scholar 

  • Bjarnsholt T, Buhlin K, Dufrêne YF, Gomelsky M, Moroni A, Ramstedt M, Rumbaugh KP, Schulte T, Sun L, Åkerlund B, Römling U (2018) Biofilm formation – what we can learn from recent developments. J Int Med. https://doi.org/10.1111/joim.12782. Epub ahead of print

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyacioglu O, Sharma M, Sulakvelidze A, Goktepe I (2013) Biocontrol of Escherichia coli O157:H7 on fresh-cut leafy greens. Bacteriophage 1:1–7

    Google Scholar 

  • Bremer B, Seale B (2009) Biofilms in dairy processing. In: Fratamico PM, Annous BA, Gunther NW (eds) Biofilms in the food and beverage industries. CRC Press, Boca Raton, pp 396–431

    Chapter  Google Scholar 

  • Campagna C, Villion M, Labrie SJ et al (2014) Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants. Int J Food Microbiol 171:41–47

    Article  CAS  PubMed  Google Scholar 

  • Carlton RM, Noordman WH, Biswas B et al (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43:301–312

    Article  CAS  PubMed  Google Scholar 

  • Carter CD, Parks A, Abuladze T et al (2012) Bacteriophage cocktail significantly reduces Escherichia coli O157: H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage 2:178–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (2006) Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach, United States, September 2006. MMWR Morb Mortal Wkly Rep 55:1045–1046

    Google Scholar 

  • Centers for Disease Control and Prevention (2011) CDC estimates of foodborne illness in the United States. https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html

  • Centers for Disease Control and Prevention (2016) Surveillance for foodborne disease outbreaks United States, 2014: Annual report, Atlanta

    Google Scholar 

  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One 12:e0168615. https://doi.org/10.1371/journal.pone.0168615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla R, Patil GR, Singh AK (2011) High hydrostatic pressure technology in dairy processing: a review. J Food Sci Technol 48:260–268

    Article  PubMed  Google Scholar 

  • Chibeu A, Agius L, Gao A et al (2013) Efficacy of bacteriophage LISTEX™P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked Turkey and roast beef. Int J Food Microbiol 167:208–214

    Article  CAS  PubMed  Google Scholar 

  • Chmielewski RAN, Frank JF (2003) Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2:22–32

    Article  CAS  PubMed  Google Scholar 

  • Corcoran M, Morris D, De Lappe N et al (2014) Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Appl Environ Microbiol 80:1507–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A (2016) New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front Microbiol 7:1–21

    Article  Google Scholar 

  • De Oliveira DCV, Fernandes Júnior A, Kaneno R et al (2014) Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Pathog Dis 11:1–6

    Article  CAS  Google Scholar 

  • Delaquis P, Bach S (2012) Resistance and sublethal damage. In: Gomez-Lopez VM (ed) Decontamination of fresh and minimally processed produce. Wiley-Blackwell, Oxford, pp 77–86

    Chapter  Google Scholar 

  • Dourou D, Beauchamp CS, Yoon Y et al (2011) Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on various food-contact surfaces encountered in beef processing. Int J Food Microbiol 149:262–268

    Article  PubMed  Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Food Safety Authority (2015) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 13:1–190

    Google Scholar 

  • European Food Safety Authority (2016) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J 14:1–231

    Google Scholar 

  • Fairhead H (2009) SASP gene delivery: a novel antibacterial approach. Drug News Perspect 2009(22):197–203. https://doi.org/10.1358/dnp.2009.22.4.1367708

    Article  CAS  Google Scholar 

  • Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 25(Suppl 7):S27–S33. https://doi.org/10.12968/jowc.2016.25.7.S27

    Article  Google Scholar 

  • Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S (2018) Bacteriophage therapy for foot ulcer treatment as an effective step for moving toward clinical trials. Methods Mol Biol 1693:159–170. https://doi.org/10.1007/978-1-4939-7395-8_14

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J, Szewzyk U et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  PubMed  Google Scholar 

  • Giaouris E, Heir E, Hébraud M et al (2014) Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci 97:289–309

    Article  Google Scholar 

  • Gibbons I, Adesiyun A, Seepersadsingh N, Rahaman S (2006) Investigation for possible source(s) of contamination of ready-to-eat meat products with Listeria spp. and other pathogens in a meat processing plant in Trinidad. Food Microbiol 23:359–366

    Article  PubMed  Google Scholar 

  • Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69(8):5032–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopal N, Hill C, Ross PR et al (2015) The prevalence and control of Bacillus and related spore-forming Bacteria in the dairy industry. Front Microbiol 6:1–18

    Article  Google Scholar 

  • Guenther S, Loessner MJ (2011) Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage 1:94–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenther S, Huwyler D, Richard S, Loessner MJ (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75:93–100

    Article  CAS  PubMed  Google Scholar 

  • Guenther S, Herzig O, Fieseler L et al (2012) Biocontrol of Salmonella typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154:66–72

    Article  PubMed  Google Scholar 

  • Guglielmotti DM, Mercanti DJ, Reinheimer JA, Del Luján eQuiberoni A (2012) Review: efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front Microbiol 2:1–11

    Article  Google Scholar 

  • Guobjörnsdóttir B, Einarsson H, Thorkelsson G (2005) Microbial adhesion to processing lines for fish fillets and cooked shrimp: influence of stainless steel surface finish and presence of gram-negative bacteria on the attachment of Listeria monocytogenes. Food Technol Biotechnol 43:55–61

    Google Scholar 

  • Gutiérrez D, Rodríguez-Rubio L, Martínez B et al (2016) Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol 7:1–15

    Article  Google Scholar 

  • Haldar SC (2012) Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Mar Sci Res Dev S1:1–7

    Google Scholar 

  • Han H, Wei X, Wei Y et al (2017) Isolation, characterization, and Bioinformatic analyses of lytic Salmonella Enteritidis phages and tests of their antibacterial activity in food. Curr Microbiol 74:1–9

    Article  CAS  Google Scholar 

  • Harper DR, Parracho HMRT, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284. https://doi.org/10.3390/antibiotics3030270

    Article  CAS  PubMed Central  Google Scholar 

  • Harper DR (2018) Criteria for Selecting Suitable Infectious Diseases for Phage Therapy. Viruses 10(4). pii: E177. https://doi.org/10.3390/v10040177

    Article  PubMed Central  CAS  Google Scholar 

  • Hawkins C, Harper DR, Burch D, Anggard E, Soothill J (2010) Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet Microbiol 146:309–313. https://doi.org/10.1016/j.vetmic.2010.05.014

    Article  PubMed  Google Scholar 

  • Hayes S, Murphy J, Mahony J et al (2017) Biocidal inactivation of Lactococcus lactis bacteriophages: efficacy and targets of commonly used sanitizers. Front Microbiol 8:1–14

    Article  Google Scholar 

  • Hite BH (1899) The effect of pressure in the preservation of milk: a preliminary report. West Virginia Agricultural Experiment Station, Morgantown

    Google Scholar 

  • Hong Y, Pan Y, Ebner PD (2014) Meat science and muscle biology symposium: development of bacteriophage treatments to reduce Escherichia coli O157:H7 contamination of beef products and produce. J Anim Sci 92:1366–1377

    Article  CAS  PubMed  Google Scholar 

  • Hooton SPT, Atterbury RJ, Connerton IF (2011) Application of a bacteriophage cocktail to reduce Salmonella typhimurium U288 contamination on pig skin. Int J Food Microbiol 151:157–163

    Article  PubMed  Google Scholar 

  • Iacumin L, Manzano M, Comi G (2016) Phage inactivation of Listeria monocytogenes on san Daniele dry-cured ham and elimination of biofilms from equipment and working environments. Microorganisms 4:1–12

    Article  CAS  Google Scholar 

  • Jahid IK, Ha S-D (2014) Inactivation kinetics of various chemical disinfectants on Aeromonas hydrophila planktonic cells and biofilms. Foodborne Pathog Dis 11:346–353

    Article  CAS  PubMed  Google Scholar 

  • Jindal S, Anand S, Huang K et al (2016) Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers. J Dairy Sci 99:9502–9513

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Otta SK, Karunasagar I, Karunasagar I (2001) Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int J Food Microbiol 64:367–372

    Article  CAS  PubMed  Google Scholar 

  • Kang HW, Kim JW, Jung TS, Woo GJ (2013) wksl3, a new biocontrol agent for Salmonella enterica serovars Enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol 79:1956–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsley D (2014) High pressure processing of bivalve shellfish and HPP’s use as a virus intervention. Foods 3:336–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingsley DH, Holliman DR, Calci KR et al (2007) Inactivation of a norovirus by high-pressure processing. Appl Environ Microbiol 73:581–585

    Article  CAS  PubMed  Google Scholar 

  • Korber DR, Mangalappalli-Illathu AK, Vidović S (2009) Biofilm formation by food spoilage microorganisms in food processing environments. In: Fratamico PM, Annous BA, Gunther NW (eds) Biofilms in the food and beverage industries. CRC Press, Boca Raton, pp 169–199

    Chapter  Google Scholar 

  • Kowitt B (2016) Why our food keeps making us sick. In: Fortune. http://fortune.com/food-contamination/. Accessed 20 Feb 2018

    Google Scholar 

  • Kujiraoka M, Kuroda M, Asai K et al (2017) Comprehensive diagnosis of bacterial infection associated with acute cholecystitis using metagenomic approach. Front Microbiol 8:1–7

    Article  Google Scholar 

  • Kumar CG, Anand S (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    Article  CAS  PubMed  Google Scholar 

  • Kumaran D, Taha M, Yi Q, Ramirez-Arcos S, Diallo JS, Carli A, Abdelbary H (2018) Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front Microbiol 9:127. https://doi.org/10.3389/fmicb.2018.00127

    Article  PubMed  PubMed Central  Google Scholar 

  • Latorre AA, Van Kessel JS, Karns JS et al (2010) Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. J Dairy Sci 93:2792–2802

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Ku H-JJ, Lee D-HH et al (2016) Characterization and genomic study of the novel bacteriophage HY01 infecting both Escherichia coli O157:H7 and Shigella flexneri: potential as a biocontrol agent in food. PLoS One 11:1–21

    Google Scholar 

  • Lequette Y, Boels G, Clarisse M, Faille C (2010) Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling 26:421–431

    Article  CAS  PubMed  Google Scholar 

  • Leverentz B, Conway W, Alavidze Z et al (2001) Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Prot 64:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Leverentz B, Conway WS, Camp MJ et al (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Society 69:4519–4526

    CAS  Google Scholar 

  • Lewis K (2010) Persister Cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Liu NT, Lefcourt AM, Nou X et al (2013) Native microflora in fresh-cut produce processing plants and their potentials for biofilm formation. J Food Prot 76:827–832

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Niu YD, Meng R et al (2015) Control of Escherichia coli O157 on beef at 37, 22 and 4°C by T5-, T1-, T4-and O1-like bacteriophages. Food Microbiol 51:69–73

    Article  CAS  PubMed  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci 27:11197–11202

    Article  CAS  Google Scholar 

  • Ly-Chatain MH (2014) The factors affecting effectiveness of treatment in phages therapy. Front Microbiol 5:1–7

    Article  Google Scholar 

  • Lynch MF, Tauxe RV, Hedberg CW (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137:307–315

    Article  CAS  PubMed  Google Scholar 

  • Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  PubMed  Google Scholar 

  • Marin C, Hernandiz A, Lainez M (2009) Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poult Sci 88:424–431

    Article  CAS  PubMed  Google Scholar 

  • Mercanti DJ, Guglielmotti DM, Patrignani F et al (2012) Resistance of two temperate Lactobacillus paracasei bacteriophages to high pressure homogenization, thermal treatments and chemical biocides of industrial application. Food Microbiol 29:99–104

    Article  CAS  PubMed  Google Scholar 

  • Mizan MFR, Jahid IK, Ha S-D (2015) Microbial biofilms in seafood: a food-hygiene challenge. Food Microbiol 49:41–55

    Article  CAS  PubMed  Google Scholar 

  • Mizan MFR, Jahid IK, Kim M et al (2016) Variability in biofilm formation correlates with hydrophobicity and quorum sensing among Vibrio parahaemolyticus isolates from food contact surfaces and the distribution of the genes involved in biofilm formation. Biofouling 32:497–509

    Article  CAS  PubMed  Google Scholar 

  • Møretrø T, Schirmer BCT, Heir E et al (2017) Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int J Food Microbiol 241:215–224

    Article  PubMed  CAS  Google Scholar 

  • Morgan IR, Krautil FL, Craven JA (1987) Effect of time in lairage on caecal and carcass Salmonella contamination of slaughter pigs. Epidemiol Infect 98:323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustapha S, Mustapha EM, Nozha C (2013) Vibrio alginolyticus : an emerging pathogen of foodborne diseases. Int J Sci Technol 2:302–309

    Google Scholar 

  • National Research Council (US) Subcommittee on Microbiological Criteria (1985) An evaluation of the role of microbiological criteria for foods and food ingredients. National Academy Press, Washington, DC

    Google Scholar 

  • Oliver SP, Jayarao BM, Almeida RA (2005) Foodborne pathogens in Milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2:115–129

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Breidt F, Kathariou S (2006) Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72:7711–7717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel J, Sharma M, Millner P et al (2011) Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis 8:541–546

    Article  PubMed  Google Scholar 

  • Pearl S, Gabay C, Kishony R, Oppenheim A, Balaban NQ (2008) Nongenetic individuality in the host-phage interaction. PLoS Biol 6:e120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pereira A, Melo LF (2009) Monitoring of biofilms in the food and beverage industries. In: Fratamico PM, Annous BA, Gunther NW (eds) Biofilms in the food and beverage industries. CRC Press, Boca Raton, pp 131–151

    Chapter  Google Scholar 

  • Perera MN, Abuladze T, Li M et al (2015) Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol 52:42–48

    Article  CAS  PubMed  Google Scholar 

  • Phagoburn (2018). Available online: http://www.phagoburn.eu (accessed on 11 Sept 2018)

  • Prakash B, Veeregowda BM, Krishnappa G (2003) Biofilms: a survival strategy of bacteria. Curr Sci 85:1299–1307

    Google Scholar 

  • Raffaella C, Casettari L, Fagioli L et al (2017) Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. Int J Food Microbiol 241:132–140

    Article  CAS  Google Scholar 

  • Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18(6):237–238. https://doi.org/10.12968/jowc.2009.18.6.42801

    Article  CAS  PubMed  Google Scholar 

  • Richter FL, Cords BR (2001) Formulation of sanitizers and disinfectants. In: Block SS (ed) Disinfection, sterilization, and preservation. Lippincott Williams & Wilkins, Philadelphia, pp 473–490

    Google Scholar 

  • Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R, Jennes S, Zizi M, Pirnay JP (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4:66–73

    PubMed  PubMed Central  Google Scholar 

  • Roy B, Ackermann HW, Pandian S et al (1993) Biological inactivation of adhering Listeria monocytogenes by listeriaphages and a quaternary ammonium compound. Appl Environ Microbiol 59:2914–2917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruppé E, Lazarevic V, Girard M et al (2017) Clinical metagenomics of bone and joint infections: a proof of concept study. Sci Rep 7:7718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sampathkumar B, Khachatourians G, Korber D (2005) Food processing biofilms and antimicrobial agents. In: Hui YH (ed) Handbook of food science, technology, and engineering. Taylor & Francis, Boca Raton, pp 84–81

    Google Scholar 

  • Sasikala D, Srinivasan P (2016) Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal. Microb Pathog 101:24–35

    Article  CAS  PubMed  Google Scholar 

  • Shikongo-Nambabi MNNN, Kachigunda B, Venter SN (2010) Evaluation of oxidising disinfectants to control vibrio biofilms in treated seawater used for fish processing. Water SA 36:215–220

    CAS  Google Scholar 

  • Shin G-A, Linden KG, Sobsey MD (2005) Low pressure ultraviolet inactivation of pathogenic enteric viruses and bacteriophages. Journal of Environmental Engineering and Science 4(S1):S7–S11

    Article  CAS  Google Scholar 

  • Silagyi K, Kim S-H, Martin Lo Y, Wei C (2009) Production of biofilm and quorum sensing by Escherichia coli O157:H7 and its transfer from contact surfaces to meat, poultry, ready-to-eat deli, and produce products. Food Microbiol 26:514–519

    Article  CAS  PubMed  Google Scholar 

  • Sillankorva S, Azeredo J (2014) The use of bacteriophages and bacteriophage-derived enzymes for clinically relevant biofilm control. In: Borysowski J, Miedzybrodzki R, Gorski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk

    Google Scholar 

  • Sillankorva S, Oliveira R, Vieira MJ et al (2004) Bacteriophage phi S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20:133–138

    Article  PubMed  Google Scholar 

  • Sillankorva S, Neubauer P, Azeredo J (2008) Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol 8:1–12

    Article  CAS  Google Scholar 

  • Sillankorva S, Neubauer P, Azeredo J (2010) Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling 26:567–575

    Article  PubMed  Google Scholar 

  • Sillankorva S, Neubauer P, Azaredo J (2011) Use of bacteriophages to control biofilms. LAP Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  • Silva ENG, Figueiredo ACL, Miranda FA, de Castro Almeida RC (2014) Control of Listeria monocytogenes growth in soft cheeses by bacteriophage P100. Brazilian J Microbiol 45:11–16

    Article  Google Scholar 

  • Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT-Food Sci Technol 43:573–583

    Article  CAS  Google Scholar 

  • Snyder AB, Perry JJ, Yousef AE (2016) Developing and optimizing bacteriophage treatment to control enterohemorrhagic Escherichia coli on fresh produce. Int J Food Microbiol 236:90–97

    Article  PubMed  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spricigo DA, Bardina C, Cortés P et al (2013) Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int J Food Microbiol 165:169–174

    Article  CAS  PubMed  Google Scholar 

  • Srey S, Jahid IK, Ha S-D (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585

    Article  Google Scholar 

  • Srivastava S, Bhargava A (2016) Biofilms and human health. Biotechnol Lett 38:1–22

    Article  CAS  PubMed  Google Scholar 

  • Stanfield P (2003) Cleaning and sanitizing a food plant. In: Hui YH, Bruinsma BL, Gorham JR et al (eds) Food plant sanitation. Marcel Dekker, Inc., New York, pp 101–115

    Google Scholar 

  • Sukumaran AT, Nannapaneni R, Kiess A, Sharma CS (2015) Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int J Food Microbiol 207:8–15

    Article  CAS  PubMed  Google Scholar 

  • Tait K, Skillman LC, Sutherland IW (2002) The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18:305–311. https://doi.org/10.1080/0892701021000034418

    Article  Google Scholar 

  • Teh AHT, Lee SM, Dykes GA (2014) Does Campylobacter jejuni form biofilms in food-related environments? Appl Environ Microbiol 80:5154–5160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchiyama J, Shigehisa R, Nasukawa T, Mizukami K, Takemura-Uchiyama I, Ujihara T, Murakami H, Imanishi I, Nishifuji K, Sakaguchi M, Matsuzaki S (2018) Piperacillin and ceftazidime produce the strongest synergistic phage-antibiotic effect in Pseudomonas aeruginosa. Arch Virol 163:1941–1948. https://doi.org/10.1007/s00705-018-3811-0

    Article  CAS  PubMed  Google Scholar 

  • Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131

    Article  PubMed  Google Scholar 

  • Vestby LK, Møretrø T, Langsrud S et al (2009) Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Vet Res 5:1–6

    Article  Google Scholar 

  • Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F (2011) Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int J Food Microbiol 145:37–42

    Article  PubMed  Google Scholar 

  • Wang J, Ray AJ, Hammons SR, Oliver HF (2015) Persistent and transient Listeria monocytogenes strains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons. Foodborne Pathog Dis 12:151–158

    Article  PubMed  CAS  Google Scholar 

  • Winkelströter LK, dos Reis Teixeira FB, Silva EP et al (2014) Unraveling microbial biofilms of importance for food microbiology. Microb Ecol 68:35–46

    Article  PubMed  Google Scholar 

  • Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79:7116–7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolston J, Parks AR, Abuladze T et al (2013) Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage 3:1–6

    Article  Google Scholar 

  • Wright A, Hawkins C, Anggard EA, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34(4):349–357. https://doi.org/10.1111/j.1749-4486.2009.01973.x

    Article  CAS  PubMed  Google Scholar 

  • You L, Suthers PF, Yin J (2002) Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. J Bacteriol 184:1888–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Hu Z (2013) Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol Bioeng 110:286–295

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hunt HK, Hu Z (2013) Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems. Water Res 47:4507–4518

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the project PTDC/BBB-BSS/6471/2014, the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and under the scope of the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). This work was also supported by BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte. Catarina Milho acknowledges FCT for the grant SFRH/BD/94434/2013. Sanna Sillankorva is an FCT Investigator (IF/01413/2013).

Glossary

BAC:

Benzalkonium chloride

Biocides:

The European legislation as a chemical substance or microorganism intended to destroy, deter, render harmless, or exert a controlling effect on any harmful organism by chemical or biological means. US EPA defines biocide as a diverse group of poisonous substances including preservatives, insecticides, disinfectants, and pesticides used for the control of organisms that are harmful to human or animal health or that cause damage to natural or manufactured products

Biofilm:

Surface-associated microbial cells that are embedded in a self-produced extracellular polymeric substance matrix

Biofilm microcolonies:

Macroscopically visible clumps of cells

CFU:

Colony forming units

Cross-contamination:

Product contamination, for instance, as a result of spread of moisture drops and aerosols formed during cleaning and worker’s activities

Disinfectants:

Agent that is applied to inanimate objects to kill some but not necessarily all organisms

EPA:

Environmental Protection Agency

EPS:

Extracellular polymeric substances comprising mainly polysaccharides, nucleic and amino acids, glycoproteins and phosphoproteins, sugars, phospholipids, uronic acids, and phenolic compounds

EPS matrix:

Extracellular polymeric substances matrix that provides mechanical stability, mediate microbial adhesion and forms a 3D polymer network that immobilizes biofilm cells

Fresh-cut produce:

Any fresh fruit or vegetable that has been physically altered from its original form, but remains in a fresh state

HACCP:

Hazard Analysis and Critical Control Points

HHP:

High hydrostatic pressure

Mature biofilm:

Complex 3D biofilm structure comprising cells in different physiological states distributed in different layers

mJ:

Millijoule

MOI:

Multiplicity of infection

MPa:

Megapascal

Multispecies biofilm:

Biofilm community that is formed by multiple bacterial species

Opportunistic:

Pathogens that cause infections and take advantage of an opportunity that is not normally available

Persister cells:

Cells that survive a stress, e.g., antibiotic treatment, due to their lack of metabolism, staying in a resting state

QAC:

Quaternary ammonium compounds

Quorum sensing:

Cell-cell communication mechanism that synchronizes gene expression in response to the cell density of a given population

RTE:

Ready to eat

Sanitizer:

Agent used to reduce the microbiological contamination to acceptable levels. These levels must conform the levels set by health regulations

Sequestrant:

Chemical action derived from the binding of a metal ion in solution with the formation of a soluble and stable complex

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Sillankorva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Milho, C., Silva, M.D., Sillankorva, S., Harper, D.R. (2019). Biofilm Applications of Bacteriophages. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics