Skip to main content
Book cover

Lake Pavin pp 255–284Cite as

Anaerobic Microbial Communities and Processes Involved in the Methane Cycle in Freshwater Lakes-a Focus on Lake Pavin

  • Chapter
  • First Online:

Abstract

The atmospheric concentration of methane (CH4), a major greenhouse gas, is mainly controlled by the activities of CH4-producing (methanogens) and CH4-consuming (methanotrophs) microorganisms. Freshwater lakes are identified as one of the main CH4 sources, as it is estimated that they contribute to 6–16 % of natural CH4 emissions. It is therefore critical to better understand the biogeochemical cycling of CH4 in these ecosystems.

In this vein, the Lake Pavin provides a useful microbial ecosystem to investigate CH4 cycle in freshwater systems. Despite a significant production of CH4 in the deep anoxic water column and sediment, the amounts of CH4 emitted by Lake Pavin to the atmosphere are several orders of magnitude lower than those of temperate lakes suggesting intense consumption activities of this gas.

This chapter focuses on CH4 cycle, but as methanogenesis and anaerobic methanotrophy build competitive and cooperative relationships with a number of bacterial metabolic groups, we also address bacterial processes that are tightly coupled with CH4 cycle (e.g., ferric iron reduction). Three main sections constitute this chapter:

  • A presentation of CH4 cycle, including methanogenesis and methanotrophy, in freshwater systems and particularly in Lake Pavin,

  • The relationships between CH4 cycle and some other biogeochemical processes in Lake Pavin (ferric iron reduction, sulfate reduction and fermentation), including a brief overview of anaerobic microbial metabolisms,

  • Sections on methodologies enabling to access informations on the anaerobic metabolisms (e.g., biomarkers, isotopes, microcalorimetry, nucleic acid molecular markers, magnetoFISH).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For detailed informations see Conrad 2009; EPA 2010.

  2. 2.

    For more details, see Bastviken et al. 2004, 2008, 2009.

  3. 3.

    For detailed informations, see Nazaries et al. 2013.

  4. 4.

    For more informations, see Hedderich and Whitman 2006; Borrel et al. 2011; Nazaries et al. 2013.

  5. 5.

    For detailed informations, see Ferry 2010.

  6. 6.

    For detailed information’s, see McInerney et al. 2008, 2009, 2011; Sieber et al. 2012.

  7. 7.

    For a detailed review, see Drake et al. 1994, 2006; Müller et al. 2004; Ragsdale and Pierce 2008.

  8. 8.

    For detailed informations see Zumft 1992, 1997; Burgin and Hamilton 2007.

  9. 9.

    For detailed informations, see Widdel 1988; Muyzer and Stams 2008.

  10. 10.

    For detailed informations, see Ehrlich and Newman 2008.

  11. 11.

    For a detailed protocol see Trembath-Reichert et al. (2013)

    *TEM picture J. Colombet

    ** CLSM picture O. Bardot.

  12. 12.

    For more details, several reviews can be found on aerobic (Hanson and Hanson 1996; Trotsenko and Murrell 2008) and anaerobic oxidation of methane (Knittel and Boetius 2009; Thauer and Shima 2008.

Abbreviations

ANME:

Anaerobic Methanotrophs

AOM:

Anaerobic Oxidation of Methane

CARD:

Catalyzed Reporter Deposition

CLSM:

Confocal Laser Scanning Microscopy

DAPI:

Diamidino-2-phenylindole

FISH:

Fluorescent in situ hybridization

FRB:

Ferric Iron Reducing Bacteria

HRP:

Horseradish Peroxidase

MBGD:

Marine Benthic Group D

MMO:

Methane Mono-Oxygenase

MPR:

Methane Production Rate

NRB:

Nitrate Reducing Bacteria

pMMO:

Particulate Methane Mono-Oxygenase

p.p.m.:

Parts Per Millions

PLFA:

Phospholipids Fatty Acids

rRNA:

Ribosomal RNA

sMMO:

Soluble Methane Mono-Oxygenase

SRB:

Sulfate Reducing Bacteria

TEM:

Transmission Electron Microscopy

References

  • Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    Article  CAS  PubMed  Google Scholar 

  • Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862

    Article  CAS  PubMed  Google Scholar 

  • Auguet JC, Barberan A, Casamayor EO (2010) Global ecological patterns in uncultured Archaea. ISME J 4:182–190

    Article  PubMed  Google Scholar 

  • Bapteste E, Brochier C, Boucher Y (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1:353–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastviken D (2009) Methane. In: Likens G (ed) Encyclopedia of inland waters. Elsevier, Oxford, pp 783–805

    Chapter  Google Scholar 

  • Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane oxidation in lakes- a comparison of methods. Environ Sci Technol 36:3354–3361

    Article  CAS  PubMed  Google Scholar 

  • Bastviken D, Ejlertsson J, Sundh I, Tranvik L (2003) Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84:969–981

    Article  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:GB4009

    Article  CAS  Google Scholar 

  • Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res 113:G02024

    Article  CAS  Google Scholar 

  • Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  PubMed  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belaich JP (1980) Growth and metabolism in bacteria. In: Beezer AE (ed) Biological microcalorimetry. Academic, London, pp 1–42

    Google Scholar 

  • Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep 3:36–46

    Article  CAS  PubMed  Google Scholar 

  • Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G, Viollier E, Fonty G, Peyret P (2011) Identification of microbial communities involved in the methane cycle in a freshwater meromictic lake. FEMS Microbiol Ecol 77:533–545

    Article  CAS  PubMed  Google Scholar 

  • Birgel D, Peckmann J (2008) Aerobic methanotrophy at ancient marine methane seeps: a synthesis. Org Geochem 39:1659–1667

    Article  CAS  Google Scholar 

  • Birou B, von Stockar U (1989) Application of bench-scale calorimetry to chemostat cultures. Enzyme Microb Technol 11:12–16

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847

    Article  CAS  PubMed  Google Scholar 

  • Borrel G, Lehours AC, Crouzet O, Jézéquel D, Rockne D, Kulczak A, Duffaud E, Joblin K, Fonty G (2012a) Stratification of Archaea in the deep sediments of a freshwater meromictic lake: vertical shift from methanogenic to uncultured archaeal lineages. PlosOne 7:e43346

    Article  CAS  Google Scholar 

  • Borrel G, Joblin K, Guedon A, Colombet J, Tardy V, Lehours AC, Fonty G (2012b) Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. Int J Syst Evol Microbiol 62:1625–1629

    Article  CAS  PubMed  Google Scholar 

  • Borrel G, Colombet J, Robin A, Lehours AC, Prangishvili D, Sime-Ngando T (2012c) Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat. ISME J 6:2119–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, O’Toole PW, Harris HM, Peyret P, Brugère JF, Gribaldo S (2013) Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 5:1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, Parisot N, Harris HMB, Peyrtaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O’Toole PW, Brugère JF (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braissant O, Bonkat G, Wirz D, Bachmann A (2013) Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochimica Acta 555:64–71

    Article  CAS  Google Scholar 

  • Bricheux G, Bonnet JL, Bohatier J, Morel JP, Morel-Desrosiers N (2013) Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis. Ecotoxicol Environ Saf 98:88–94

    Article  CAS  PubMed  Google Scholar 

  • Briee C, Moreira D, Lopez-Garcia P (2007) Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res Microbiol 158:213–227

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Brugère JF, Borrel G, Gaci N, Tottey W, O’Toole PW, Malpuech-Brugère C (2013) Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5:5–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96

    Article  Google Scholar 

  • Case RJ, Boucher Y, Dahllof I, Holmstrom C, Doolittle WF, Kelleberg S (2007) Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73:278–288

    Article  CAS  PubMed  Google Scholar 

  • Chan OC, Claus P, Casper P, Ulrich A, Lueders T, Conrad R (2005) Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7:1139–1149

    Article  CAS  PubMed  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2:299–327

    Article  CAS  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Klose M, Claus P, Enrich-Prast A (2010) Methanogenic pathway, C-13 isotope fractionation, and archaeal community composition in the sediment of two clear-water lakes of Amazonia. Limnol Oceanogr 55:689–702

    CAS  Google Scholar 

  • Costello AM, Auman AJ, Macalady JL, Scow KM, Lidstrom ME (2002) Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4:443–450

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57:472–479

    Article  CAS  PubMed  Google Scholar 

  • Deines P, Grey J, Richnow HH, Eller G (2007) Linking larval chironomids to methane: seasonal variation of the microbial methane cycle and chironomid delta C-13. Aquat Microb Ecol 46:273–282

    Article  Google Scholar 

  • Drake HL, Daniel SL, Matthies C, Küsel K (1994) Acetogenesis, acetogenic bacteria, and the acethyl-CoA pathway: past and current perspectives. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 3–60

    Chapter  Google Scholar 

  • Drake HL, Küsel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH (eds) The prokaryotes, vol 2, Ecophysiology and biochemistry. Springer, New York, pp 354–420

    Google Scholar 

  • Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Mirobiol 62:1902–1907

    Article  CAS  Google Scholar 

  • Dubrunfault M (1856) Note sur la chaleur et le travail mécanique produits par la fermentation vineuse. Compt Rend 42:945–948

    Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou SB, Ly B, Saw JH, Zhou ZM, Ren Y, Wang JM, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich HL, Newman DK (2008) Geomicrobiology of iron. In: Ehrilich HL, Newman DK (eds) Geomicrobiology, vol 5. CRC Press, Boca Raton, pp 279–329

    Chapter  Google Scholar 

  • EPA (United States Environmental Protection Agency) (2010) Methane and nitrous oxide emissions from natural sources. Office of atmospheric programs, Washington. Available at http://www.epa.gov/outreach/pdfs/Methane-and-Nitrous-Oxide-Emissions-From-Natural-Sources.pdf

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG (2010) The chemical biology of methanogenesis. Planet Space Sci 58:1775–1783

    Article  CAS  Google Scholar 

  • Frenzel P (2000) Plant-associated methane oxidation in rice fields and wetlands. Adv Microb Ecol 16:85–114

    CAS  Google Scholar 

  • Fricke WF, Seedorf H, Henne A, Kruer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK (2006) The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188:642–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308

    Article  Google Scholar 

  • Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic archaea. Anaerobe 6:205–226

    Article  CAS  PubMed  Google Scholar 

  • Glissmann K, Chin KJ, Casper P, Conrad R (2004) Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microb Ecol 48:389–399

    Article  CAS  Google Scholar 

  • Grossart HP, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci U S A 108:19657–19661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimbaud C, Catoire V, Gogo S, Robert C, Chartier M, Laggoun-Défarge F, Grossel A, Albéric P, Pomathiod L, Nicoullaud B, Richard G (2011) A portable infrared laser spectrometer for flux measurements of trace gases at the geosphere-atmosphere interface. Meas Sci Technol 22:1–17

    Article  CAS  Google Scholar 

  • Gustafsson L (1991) Microbiological calorimetry. Thermochimica Acta 193:145–171

    Article  CAS  Google Scholar 

  • Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69:5483–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  CAS  PubMed  Google Scholar 

  • Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol 75:1487–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedderich R, Whitman W (2006) Physiology and biochemistry of the methane-producing Archaea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 1050–1079

    Chapter  Google Scholar 

  • Ianotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114:1231–1240

    Google Scholar 

  • Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28:244–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Im J, Lee SW, Yoon S, DiSpirito AA, Semrau JD (2011) Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep 3:174–181

    Article  CAS  PubMed  Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M et al (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci U S A 103:2815–2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB et al (eds) contribution of working group I to the fourth assessment report of the intergovermmental panel on climate change (IPCC). Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105:300–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islas-Lima S, Thalasso F, Gómez-Hernandez J (2004) Evidence of anoxic methane oxidation coupled to denitrification. Water Res 38:13–16

    Article  CAS  PubMed  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate - a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Rev 88:181–197

    Article  CAS  Google Scholar 

  • Jézéquel D, Michard G, Viollier E, Prévot F, Groleau A, Sarazin G, Lopes F (2010) Le cycle du carbone et les risques d’éruption gazeuse au Pavin. Rev Sci Nat Auver 74:67–86

    Google Scholar 

  • Kankaala P, Taipale S, Grey J, Sonninen E, Arvola L, Jones RI (2006) Experimental delta C-13 evidence for a contribution of methane to pelagic food webs in lakes. Limnol Oceanogr 51:2821–2827

    Article  CAS  Google Scholar 

  • Kaserer H (1905) Ueber die oxydation des wasserstofes und des methane durch mikroorganismen (Sur l’oxydation de l’hydrogène et du méthane par les microorganismes). Z landw Versuchsw in Osterreich 8:789–792

    CAS  Google Scholar 

  • Kiyashko SI, Imbs AB, Narita T, Svetashev VI, Wada E (2004) Fatty acid composition of aquatic insect larvae Stictochironomus pictulus (Diptera: Chironomidae): evidence of feeding upon methanotrophic bacteria. Comp Biochem Physiol B Biochem Mol Biol 139:705–711

    Article  PubMed  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) The anaerobic oxidation of methane-progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  • Knittel K, Losekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger M, Meyerdierks A, Glockner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt R, Bocher R, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881

    Article  PubMed  CAS  Google Scholar 

  • Kvenvolden KA, Rogers BW (2005) Gaia’s breath-global methane exhalations. Mar Pet Geol 22:579–590

    Article  CAS  Google Scholar 

  • Lamprecht I (1980) Growth and metabolism in yeasts. In: Beezer AE (ed) Biological microcalorimetry. Academic, London, pp 43–112

    Google Scholar 

  • Lang K, Schuldes J, Kligl A, Poehlein A, Daniel R, Brune A (2015) New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microbiol 81:1338–1352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavoisier AL, de Laplace PS (1780) Mémoire sur la chaleur. Mémoires de l’Académie des Sciences, Paris. Available online by CRHST/CNRS

    Google Scholar 

  • Lehours AC, Bardot C, Thenot A, Debroas D, Fonty G (2005) Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France. Appl Environ Microbiol 71:7389–7400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehours AC, Evans P, Bardot C, Joblin K, Gerard F (2007) Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehours AC, Batisson I, Guedon A, Mailhot G, Fonty G (2009) Diversity of culturable bacteria, from the anaerobic zone of the meromictic lake pavin, able to perform dissimilatory-iron reduction in different in vitro conditions. Geomicrobiol J 26:212–223

    Article  CAS  Google Scholar 

  • Lehours AC, Rabiet M, Morel-Desrosiers N, Morel JP, Jouve L, Arbeille B, Mailhot G, Fonty G (2010) Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France). Geomicrobiol J 27:714–722

    Article  CAS  Google Scholar 

  • Lelieved J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B Chem Phys Meteorol 50:128–150

    Article  Google Scholar 

  • Lescure T, Carpentier A, Battaglia-Brunet F, Morel-Desrosiers N (2013) Oxidation of As(III) by the bacterial community of a marine sediment monitored by microcalorimetry. Geomicrobiol J 30:540–548

    Article  CAS  Google Scholar 

  • Liikanen A, Martikainen PJ (2003) Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment-water interface in a eutrophic lake. Chemosphere 52:1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Liikanen A, Huttunen JT, Valli K, Martikainen PJ (2002) Methane cycling in the sediment and water column of mid-boreal hyper-eutrophic Lake Kevätön, Finland. Arch Hydrobiol 154:585–603

    Article  CAS  Google Scholar 

  • Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, Stephanauskas R, Ritcher M, Kleindienst S, Lenk S, Schramm A, Jørgensen BB (2013) Predominant Archaea in marine sediments degrade detrital proteins. Nature 496:1–6

    Article  CAS  Google Scholar 

  • Lomans BP, Smolders AJP, Intven LM, Pol A, denCamp H, vanderDrift C (1997) Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl Environ Microbiol 63:4741–4747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomans BP, Luderer R, Steenbakkers P, Pol A, van der Drift C, Vogels GD, Op den Camp HJM (2001) Microbial populations involved in cycling of dimethyl sulfide and methanethiol in freshwater sediments. Appl Environ Microbiol 67:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes F, Viollier E, Thiam A, Michard G, Abril G, Groleau A, Prévot F, Carrias JF, Albéric P, Jézéquel D (2011) Biogeochemical modeling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl Geochem 26:1919–1932

    Article  CAS  Google Scholar 

  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovley DR (1987) Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol J 5:375–399

    Article  CAS  Google Scholar 

  • Lovley DR (2006) The dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. The Prokaryotes, vol. 2 (Springerlink eds.), Springer, New York, pp 635–658

    Google Scholar 

  • Lovley DR, Klug MJ (1983) Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon-dioxide in the sediments of a eutrophic lake. Appl Environ Microbiol 45:1310–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl Environ Microbiol 54:1472–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol 148:3521–3530

    Article  CAS  Google Scholar 

  • Mayr S, Latkoczy C, Kruger M, Gunther D, Shima S, Thauer RK, Widdel F, Jaun B (2008) Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. J Am Chem Soc 130:10758–10767

    Article  CAS  PubMed  Google Scholar 

  • Mc Inerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann NY Acad Sci 1125:58–72

    Article  CAS  Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus R (2011) Microbial syntrophy: ecosystem-level biochemical cooperation. Microbe 6:479–485

    Google Scholar 

  • Michmerhuizen CM, Striegl RG, McDonald ME (1996) Potential methane emission from north-temperate lakes following ice melt. Limnol Oceanogr 41:985–991

    Article  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    Article  CAS  PubMed  Google Scholar 

  • Müller V, Imkamp F, Rauwolf A, Küsel K, Drake HL (2004) Molecular and cellular biology of acetogenic bacteria. In: Nakano MM, Zuber P (eds) Strict and facultative anaerobes: medical and environmental aspects. Horizon Bioscience, Wymondham, pp 251–281

    Google Scholar 

  • Müller N, Griffin BM, Stingl U, Schink B (2008) Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. Environ Microbiol 10:1501–1511

    Article  PubMed  CAS  Google Scholar 

  • Murase J, Sugimoto A (2005) Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan). Limnol Oceanogr 50:1339–1343

    Article  CAS  Google Scholar 

  • Murase J, Sakai Y, Kametani A, Sugimoto A (2005) Dynamics of methane in mesotrophic Lake Biwa, Japan. Ecol Res 20:377–385

    Article  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev 6:441–454

    CAS  Google Scholar 

  • Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15:2395–2417

    Article  CAS  PubMed  Google Scholar 

  • Nold SC, Boschker HTS, Pel R, Laanbroek HJ (1999) Ammonium addition inhibits C-13-methane incorporation into methanotroph membrane lipids in a freshwater sediment. FEMS Microbiol Ecol 29:81–89

    Article  CAS  Google Scholar 

  • Nozhevnikova AN, Nekrasova V, Ammann A, Zehnder AJB, Wehrli B, Holliger C (2007) Influence of temperature and high acetate concentrations on methanogenensis in lake sediment slurries. FEMS Microbiol Ecol 62:336–344

    Article  CAS  PubMed  Google Scholar 

  • Nüsslein B, Eckert W, Conrad R (2003) Stable isotope biogeochemistry of methane formation in profundal sediments of Lake Kinneret (Israel). Limnol Oceanogr 48:1439–1446

    Article  Google Scholar 

  • Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omil F, Lens P, Visser A, Hulshoff Pol LW, Lettinga G (1998) Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Biotechnol Bioeng 57:676–685

    Article  CAS  PubMed  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  CAS  PubMed  Google Scholar 

  • Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40:79–82

    Article  Google Scholar 

  • Paul K, Nonoh JO, Mikulski L, Brune A (2012) “Methanoplasmatales”, Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78:8245–8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res 105:11981–11990

    Article  CAS  PubMed  Google Scholar 

  • Pernthaler A, Orphan VJ (2010) U.S. Patent No. 7736855. Process for separating microorganisms. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, den Camp H (2007) Methanotrophy below pH1 by a new Verrucomicrobia species. Nature 450:817–874

    Article  CAS  Google Scholar 

  • Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428

    Article  PubMed  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM et al (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev 96:2515–2539

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljundahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravussin E, Burnand B, Schutz Y, Jéquier E (1982) Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obeses and control subjects. Am J Clin Nutr 35:566–573

    CAS  PubMed  Google Scholar 

  • Reeburgh WS (2003) Global methane biogeochemistry. In: Keeling RF, Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 4, The atmosphere. Elsevier-Pergamon, Oxford, pp 65–89

    Google Scholar 

  • Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608

    Article  CAS  PubMed  Google Scholar 

  • Schimel J (2004) Playing scales in the methane cycle: from microbial ecology to the globe. Proc Natl Acad Sci USA 101:12400–12401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperations in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B, Stams AJM (2001) Syntrophism among prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York, p 25

    Google Scholar 

  • Schonheit P, Keweloh H, Thauer RK (1981) Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol Lett 12:347–349

    Article  Google Scholar 

  • Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M, Boetius A (2011) Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 76:26–38

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Conrad R (1996) Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiol Ecol 20:1–14

    Article  CAS  Google Scholar 

  • Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326:716–718

    Article  CAS  PubMed  Google Scholar 

  • Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452

    Article  CAS  PubMed  Google Scholar 

  • Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15:150–155

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Howes BL, Garabedian SP (1991) In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests. Appl Environ Microbiol 57:1997–2004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sohngen NL (1906) Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gerbrauchen (Les bactéries qui utilisent le méthane comme source d’énergie et de carbone). Z Bakteriol Parazitenk (Infektionster) 15:513–517

    Google Scholar 

  • Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JHP, Keltjens JT (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50:1989–1999

    Article  CAS  PubMed  Google Scholar 

  • Sprenger WW, Hackstein JHP, Keltjens JT (2005) The energy metabolism of Methanomicrococcus blatticola: physiological and biochemical aspects. Antonie Van Leeuwenhoek 87:289–299

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568e577

    Article  CAS  Google Scholar 

  • Stephenson M (1947) Some aspects of hydrogen transfer. Ant v Leeuwenhoek 12:33–48

    Article  CAS  Google Scholar 

  • Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 103:2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tewes FJ, Thauer RK (1980) Regulation of ATP synthesis in glucose fermenting bacteria involved in interspecies hydrogen transfer. In: Gottschalk G, Pfennig N, Werner H (eds) Anaerobes and anaerobic infections. G. Fischer, Stuttgart, pp 97–104

    Google Scholar 

  • Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann NY Acad Sci 1125:158–170

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  PubMed  Google Scholar 

  • Trembath-Reichert E, Green-Saxena A, Orphan VJ (2013) Whole cell immunomagnetic enrichment of environmental microbial consortia using rRNA-targeted Magneto-FISH. Methods Enzymol 531:21–44

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  PubMed  Google Scholar 

  • Van Bodegom PM, Scholten JCM, Roden EE, Stams AJM (2004) Direct inhibition of methanogenesis by ferric iron. FEMS Microb Ecol 49:261–268

    Article  CAS  Google Scholar 

  • Von Stockar U, Marison IW (1989) The use of calorimetry in biotechnology. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology, vol 40. Springer, Berlin, pp 93–134

    Google Scholar 

  • Wadsö I (1985) Isothermal biocalorimetry. A status report. Thermochimica Acta 88:35–48

    Article  Google Scholar 

  • Wang JS, Logan JA, McElroy MB, Duncan BN, Megretskaia IA, Yantosca RM (2004) A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochem Cycles 18:B3011. doi:10.1029/2003GB002180

    Article  CAS  Google Scholar 

  • Webster G, Sass H, Cragg BA, Gorra R, Knab NJ, Green CJ, Mathes F, Fry JC, Weightman AJ et al (2011) Enrichment and cultivation of prokaryotes associated with the sulphate methane transition zone of diffusion controlled sediments of Aarhus Bay, Denmark under heterotrophic conditions. FEMS Microbiol Ecol 77:248–263

    Article  CAS  PubMed  Google Scholar 

  • Wetzel RG (2001) Limnology – Lake and river ecosystems, 3rd edn. Academic, San Diego, p 1006

    Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 16:1291–1314

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Ye WJ, Liu XL, Lin SQ, Tan J, Pan JL, Li DT, Yang H (2009) The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol Ecol 70:263–276

    Article  CAS  Google Scholar 

  • Yvon-Durocher G, Allen AP, Batsviken D, Conrad R, Gudasz C, St-Pierr A, Thanh-Duc N, del Giorgio P (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeikus, JG (1983) Metabolic communication between biodegradative populations in nature. In: Slater JH, Whittenbury R, Wimpenny, JWT (eds) Microbes in their natural environments. Soc Gen Microbiol Symp 34:423–462. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Zhang Y, Maignien L, Zhao X, Wang F, Boon N (2011) Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol 11:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 128–206

    Chapter  Google Scholar 

  • Zinder SH, Brock TD (1978) Production of methane and carbon dioxide from methane thiol and dimethyl sulfide by anaerobic lake-sediments. Nature 273:226–228

    Article  CAS  Google Scholar 

  • Zumft WG (1992) The denitrifying prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 554–582

    Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study includes results from Master, PhD and postdoc researches supported by various instances: Région Auvergne, CNRS, Université Blaise Pascal, Ministère de la Recherche et de la Technologie. Part of the results presented was obtained with the collaboration of colleagues: Didier Jézéquel, Gilles Mailhot, Jonathan Colombet, Keith Joblin, Paul Evans, Annie Guedon, Corinne Biderre-Petit, Marion Rabiet, Karl Rockne, Christophe Guimbaud, Frédéric Savoie, Stéphane Chevrier, Pierre Agrinier, Nelly Assayag, François Prévot, Jean-Claude Romagoux, Guy Demeure, Aurélie Thénot, Télesphore Sime-Ngando. The studies were granted from different sources: French National Program EC2CO (Projects INTERLAC, METHANOLAC) and ANR Program (Project METANOX). We thank the reviewer, Bernard Ollivier, for his constructive comments, which helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lehours, AC. et al. (2016). Anaerobic Microbial Communities and Processes Involved in the Methane Cycle in Freshwater Lakes-a Focus on Lake Pavin. In: Sime-Ngando, T., Boivin, P., Chapron, E., Jezequel, D., Meybeck, M. (eds) Lake Pavin. Springer, Cham. https://doi.org/10.1007/978-3-319-39961-4_16

Download citation

Publish with us

Policies and ethics