Skip to main content

New Approach for Nonlinear Modelling Based on Online Designing of the Fuzzy Rule Base

  • Conference paper
  • First Online:
Book cover Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9692))

Included in the following conference series:

Abstract

The problem of online nonlinear modelling emerges among others from limitations of memory. This problem is often solved by using evolving systems. Evolving fuzzy systems play significant role as they are distinguishable by clear representation of knowledge (by fuzzy rules) which allows an interpretation of their behavior. The structure and the parameters of those systems can be selected online. Moreover, the fuzzy rules can represent operating points of modeled object, which can also be identified online. Then, the data from identification can be used for learning. In this paper we proposed an evolving fuzzy system for nonlinear modelling with endless number of steady states and negligible time of non-steady states. It is based on analysis of firing level of the fuzzy rules with possibilities of background learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, J.: The bipolar choquet integrals based on ternary-element sets. J. Artif. Intell. Soft Comput. Res. 6(1), 13–21 (2016)

    Article  Google Scholar 

  2. Angelov, P.P., Lughofer, E., Zhou, X.: Evolving fuzzy classifiers using different model architectures. Fuzzy Sets Syst. 159(23), 3160–3182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartczuk, Ł.: Gene expression programming in correction modelling of nonlinear dynamic objects. In: Borzemski, L., Grzech, A., Światek, J., Wilimowska, Z. (eds.) ISAT 2015, Part I. AISC, vol. 429, pp. 125–134. Springer, Heidelberg (2016)

    Google Scholar 

  4. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 169–180. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. Bartczuk, Ł., Rutkowska, D.: Medical diagnosis with type-2 fuzzy decision trees. In: Kacki, E., Rudnicki, M., Stempczyńska, J. (eds.) Computers in Medical Activity. AISC, vol. 65, pp. 11–21. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bartczuk, Ł., Rutkowska, D.: Type-2 fuzzy decision trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 197–206. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Bruździński, T., Krzyżak, A., Fevens, T., Jeleń, Ł.: Web-based framework for breast cancer classification. J. Artif. Intell. Soft Comput. Res. 4(2), 149–162 (2014)

    Google Scholar 

  8. Cococcioni, M., Ducange, P., Lazzerini, B., Marcelloni, F.: A Pareto-based multi-objective evolutionary approach to the identification of Mamdani fuzzy systems. Soft. Comput. 11, 1013–1031 (2007)

    Article  Google Scholar 

  9. Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)

    Article  Google Scholar 

  11. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)

    Google Scholar 

  12. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  13. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Trans. Syst. 4(9), 1450–1458 (2005)

    Google Scholar 

  14. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 3, pp. 1764–1769 (2005)

    Google Scholar 

  15. Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning. Expert Syst. Appl. 41(9), 4170–4180 (2014)

    Article  Google Scholar 

  16. Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification based on horizontal partitioning. Pattern Recogn. 47, 2652–2661 (2014)

    Article  Google Scholar 

  17. Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)

    Article  Google Scholar 

  18. Das, S., Kar, S., Pal, T.: Group decision making using interval-valued intuitionistic fuzzy soft matrix and confident weight of experts. J. Artif. Intell. Soft Comput. Res. 4(1), 57–77 (2014)

    Article  Google Scholar 

  19. Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogonal series-type kernel regression neural networks in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 47–54. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Duda, P., Jaworski, M., Pietruczuk, L.: On pre-processing algorithms for data stream. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS (LNAI), vol. 7268, pp. 56–63. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part II. LNCS (LNAI), vol. 9120, pp. 364–378. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  22. Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 349–362. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. Er, M.J., Duda, P.: On the weak convergence of the orthogonal series-type kernel regresion neural networks in a non-stationary environment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 443–450. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)

    Google Scholar 

  25. Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L.: Object detection by simple fuzzy classifiers generated by boosting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 540–547. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011)

    Article  MATH  Google Scholar 

  27. Galkowski, T., Pawlak, M.: Nonparametric function fitting in the presence of nonstationary noise. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 531–538. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  28. Galkowski, T., Pawlak, M.: Orthogonal series estimation of regression functions in nonstationary conditions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part I. LNCS (LNAI), vol. 9119, pp. 427–435. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  29. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariate functions. IEEE Trans. Autom. Control 31(8), 785–787 (1986)

    Article  MATH  Google Scholar 

  30. Galkowski, T., Starczewski, A., Fu, X.: Improvement of the multiple-view learning based on the self-organizing maps. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part II. LNCS (LNAI), vol. 9120, pp. 3–12. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  31. Gręblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric pattern recognition procedures. Proc. IEEE 69(4), 482–483 (1981)

    Article  Google Scholar 

  32. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From single image to list of objects based on edge and blob detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 605–615. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  33. Jaworski, M., Er, M.J., Pietruczuk, L.: On the Application of the Parzen-Type Kernel Regression Neural Network and Order Statistics for Learning in a Non-stationary Environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 90–98. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  34. Jaworski, M., Pietruczuk, L., Duda, P.: On resources optimization in fuzzy clustering of data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS (LNAI), vol. 7268, pp. 92–99. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  35. Juang, C.F., Lin, C.T.: An on-line self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst. 6, 12–31 (1998)

    Article  Google Scholar 

  36. Kaisler, S., Armour, F., Espinosa, J.A., Money, W.: Big data: issues and challenges moving forward. In: Proceedings of the 46th Hawaii International Conference on System Sciences (HICSS), pp. 995–1004. IEEE (2013)

    Google Scholar 

  37. Kitajima, R., Kamimura, R.: Accumulative information enhancement in the self-organizing maps and its application to the analysis of mission statements. J. Artif. Intell. Soft Comput. Res. 5(3), 161–176 (2015)

    Article  Google Scholar 

  38. Korytkowski, M., Nowicki, R., Scherer, R.: Neuro-fuzzy rough classifier ensemble. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 817–823. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  39. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  40. Laskowski, Ł., Laskowska, M.: Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: probing of synthesis route. J. Solid State Chem. 220, 221–226 (2014)

    Article  Google Scholar 

  41. Laskowski, Ł., Laskowska, M., Bałanda, M., Fitta, M., Kwiatkowska, J., Dziliński, K., Karczmarska, A.: Mesoporous silica SBA-15 functionalized by nickel-phosphonic units: Raman and magnetic analysis. Microporous Mesoporous Mater. 200, 253–259 (2014)

    Article  Google Scholar 

  42. Łapa, K., Cpałka, K., Galushkin, A.I.: A new interpretability criteria for neuro-fuzzy systems for nonlinear classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part I. LNCS(LNAI), vol. 9119, pp. 448–468. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  43. Łapa K., Cpałka K., Aspects of structure and parameters selection of control systems using firework algorithm. Advances in Intelligent Systems and Computing (in print) (2015)

    Google Scholar 

  44. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 217–232. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  45. Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS(LNAI), vol. 7895, pp. 523–534. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  46. Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS(LNAI), vol. 7894, pp. 329–344. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  47. Leng, G.: A hybrid learning algorithm with a similarity-based pruning strategy for self-adaptive neuro-fuzzy systems. Appl. Soft Comput. 9(4), 1354–1366 (2009)

    Article  MathSciNet  Google Scholar 

  48. Lima, E., Hell, M., Ballini, R., Gomide, F.: Evolving fuzzy modelling using participatory learning. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications, pp. 67–86. Wiley, New York (2010)

    Chapter  Google Scholar 

  49. Ludwig, S.A.: Repulsive self-adaptive acceleration particle swarm optimization approach. J. Artif. Intell. Soft Comput. Res. 4(3), 189–204 (2014)

    Article  Google Scholar 

  50. Lughofer, E.: Evolving Fuzzy Systems - Methodologies. Advanced Concepts and Applications. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  51. Lughofer, E., Hüllermeier, E.: On-line redundancy elimination in evolving fuzzy regression models using a fuzzy inclusion measure. In: Proceedings of the EUSFLAT 2011 Conference, pp. 380–387. Elsevier, Aix-Les-Bains, France (2011)

    Google Scholar 

  52. Lughofer, E.: On-line assurance of interpretability criteria in evolving fuzzy systems - achievements, new concepts and open issues. Inf. Sci. 251, 22–46 (2013)

    Article  Google Scholar 

  53. Maciel, L., Lemos, A., Gomide, F., Ballini, R.: Evolving fuzzy systems for pricing fixed income options. Evolving Syst. 3(1), 5–18 (2012)

    Article  Google Scholar 

  54. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.-Q.: haotic states induced by resetting process in izhikevich neuron model. J. Artif. Intell. Soft Comput. Res. 5(2), 109–119 (2015)

    Article  Google Scholar 

  55. Patgiri, C., Sarma, M., Sarma, K.K.: A class of neuro-computational methods for assamese fricative classification. J. Artif. Intell. Soft Comput. Res. 5(1), 59–70 (2015)

    Article  Google Scholar 

  56. Pietruczuk, L., Duda, P., Jaworski, M.: A new fuzzy classifier for data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS(LNAI), vol. 7267, pp. 318–324. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  57. Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 459–473. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  58. Pietruczuk, L., Zurada, J.M.: Weak convergence of the recursive parzen-type probabilistic neural network in a non-stationary environment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 521–529. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  59. Ramos, J.V., Pereira, C., Dourado, A.: The building of interpretable systems in real-time. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications, pp. 127–150. Wiley, New York (2010)

    Chapter  Google Scholar 

  60. Rubio, J.J.: Stability analysis for an on-line evolving neuro-fuzzy recurrent network. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications, pp. 173–199. Wiley, New York (2010)

    Chapter  Google Scholar 

  61. Rutkowska, A.: Influence of membership functions shape on portfolio optimization results. J. Artif. Intell. Soft Comput. Res. 6(1), 45–54 (2016)

    Article  Google Scholar 

  62. Rutkowski, L.: Sequential pattern-recognition procedures derived from multiple Fourier-series. Pattern Recogn. Lett. 8(4), 213–216 (1988)

    Article  MATH  Google Scholar 

  63. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)

    Article  MathSciNet  Google Scholar 

  64. Rutkowski, L.: Computational Intelligence. Springer, New York (2008)

    Book  MATH  Google Scholar 

  65. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)

    Google Scholar 

  66. Rutkowski, L., Cpałka, K.: Flexible structures of neuro-fuzzy systems. In: Quo Vadis Computational Intelligence. Studies in Fuzziness and Soft Computing, vol 54, pp. 479–484. Springer (2000)

    Google Scholar 

  67. Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, 18–22 November, 2002 CD

    Google Scholar 

  68. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July, vol. 2, pp. 1031–1036 (2004)

    Google Scholar 

  69. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)

    Article  Google Scholar 

  70. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)

    Article  Google Scholar 

  71. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  72. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  73. Rutkowski, L., Rafajłowicz, E.: On optimal global rate of convergence of some nonparametric identification procedures. IEEE Trans. Autom. Control 34(10), 1089–1091 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  74. Scherer, R.: Neuro-fuzzy systems with relation matrix. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 210–215. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  75. Scherer, R., Rutkowski, L.: Relational equations initializing neuro-fuzzy system. In: Proceedings of the 10th Zittau Fuzzy Colloquium, Zittau, Germany, pp. 18–22 (2002)

    Google Scholar 

  76. Smyczyńska, J., Hilczer, M., Smyczyńska, U., Stawerska, R., Tadeusiewicz, R., Lewiński, A.: Artificial neural models - a novel tool for predictying the efficacy of growth hormone (GH) therapy in children with short stature. Neuroendocrinol. Lett. 36(4), 348–353 (2015). ISSN: 0172–780X, ISSN-L: 0172–780X

    Google Scholar 

  77. Smyczyńska, U., Smyczyńska, J., Hilczer, M., Stawerska, R., Lewiński, A., Tadeusiewicz, R.: Artificial neural networks - a novel tool in modelling the effectiveness of growth hormone (GH) therapy in children with GH deficiency. Pediatric Endocrinology 14(2(51)), 9–18 (2015)

    Article  Google Scholar 

  78. Soleimani, H., Lucas, K., Araabi, B.N.: Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modelling. Evolving Syst. 1(1), 59–71 (2010)

    Article  Google Scholar 

  79. Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A.: Learning methods for type-2 FLS based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 224–231. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  80. Szarek, A., Korytkowski, M., Rutkowski, L., Scherer, R., Szyprowski, J.: Application of neural networks in assessing changes around implant after total hip arthroplasty. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 335–340. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  81. Szarek, A., Korytkowski, M., Rutkowski, L., Scherer, R., Szyprowski, J.: Forecasting wear of head and acetabulum in hip joint implant. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 341–346. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  82. Szczypta, J., Przybył, A., Wang, L.: Evolutionary approach with multiple quality criteria for controller design. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 455–467. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  83. Tadeusiewicz, R.: Neural networks as a tool for modeling of biological systems. Bio-Algorithms Med-Syst. 11(3), 135–144 (2015)

    Google Scholar 

  84. Tadeusiewicz, R.: Neural networks in mining sciences - general overview and some representative examples. Arch. Min. Sci. 60(4), 971–984 (2015)

    Google Scholar 

  85. Thrun, S.: Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Kluwer Academic Publishers, Boston (1996)

    Book  MATH  Google Scholar 

  86. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  87. Yamamoto, Y., Yoshikawa, T., Furuhashi, T.: Improvement of performance of Japanese P300 speller by using second display. J. Artif. Intell. Soft Comput. Res. 5(3), 221–226 (2015)

    Article  Google Scholar 

  88. Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier, pp. 38–53. Academic Publishing House EXIT (2011)

    Google Scholar 

  89. Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  90. Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 216–230. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  91. Zalasiński, M., Cpałka, K., Er, M.J.: A new method for the dynamic signature verification based on the stable partitions of the signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Patr II. LNCS (LNAI), vol. 9120, pp. 161–174. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  92. Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 231–245. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  93. Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part II. LNCS (LNAI), vol. 9120, pp. 175–188. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

Download references

Acknowledgments

The project was financed by the National Science Centre (Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Łapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Łapa, K., Cpałka, K., Hayashi, Y. (2016). New Approach for Nonlinear Modelling Based on Online Designing of the Fuzzy Rule Base. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9692. Springer, Cham. https://doi.org/10.1007/978-3-319-39378-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39378-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39377-3

  • Online ISBN: 978-3-319-39378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics