Skip to main content

Gastrointestinal Malignancy: Genetic Implications to Clinical Applications

  • Chapter
  • First Online:
Gastrointestinal Malignancies

Part of the book series: Cancer Treatment and Research ((CTAR))

  • 1173 Accesses

Abstract

Alterations in the DNA sequences of genes, or mutations, have traditionally been viewed as the primary factors driving tumor progression, however, epigenetic evidence would suggest that some heritable traits are mediated by changes in DNA expression that are not dependent upon alterations in the primary DNA sequence. Advances in the genetic understanding of cancer have, in some instances, allowed for more precise administration of anti-neoplastic therapy. Targeted therapies, the aim of which are to target specific cellular proteins or processes used by the cancer cells, have been advocated to avoid the adverse side effects attributable to a lack of cell specificity associated with traditional chemotherapy. Here we aim to describe the current state of understanding regarding the genetic related causes of cancers, the targeted therapies aimed at killing them and the inter-relationship between these two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McAllister RM (1965) Viruses and cancer. Calif Med 102:344–352

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Butel JS (2000) Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 21(3):405–426

    Article  CAS  PubMed  Google Scholar 

  3. Yunis JJ (1983) The chromosomal basis of human neoplasia. Science 221(4607):227–236

    Article  CAS  PubMed  Google Scholar 

  4. Ponder BA (2001) Cancer genetics. Nature 411(6835):336–341

    Article  CAS  PubMed  Google Scholar 

  5. Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260(5547):170–173

    Article  CAS  PubMed  Google Scholar 

  6. Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372(6502):143–149

    Article  CAS  PubMed  Google Scholar 

  7. Benedict WF, Murphree AL, Banerjee A, Spina CA, Sparkes MC, Sparkes RS (1983) Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science 219(4587):973–975

    Article  CAS  PubMed  Google Scholar 

  8. Godbout R, Dryja TP, Squire J, Gallie BL, Phillips RA (1983) Somatic inactivation of genes on chromosome 13 is a common event in retinoblastoma. Nature 304(5925):451–453

    Article  CAS  PubMed  Google Scholar 

  9. Sparkes RS, Murphree AL, Lingua RW, Sparkes MC, Field LL, Funderburk SJ et al (1983) Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science. 219(4587):971–973

    Google Scholar 

  10. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weinberg RA (1991) Tumor suppressor genes. Science 254(5035):1138–1146

    Article  CAS  PubMed  Google Scholar 

  12. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396(6707):177–180

    Article  CAS  PubMed  Google Scholar 

  13. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428

    CAS  PubMed  Google Scholar 

  14. Baylin SB, Ohm JE. (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 6(2):107–116

    Google Scholar 

  15. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054

    Article  CAS  PubMed  Google Scholar 

  16. Hoover RN (2000) Cancer–nature, nurture, or both. N Engl J Med 343(2):135–136

    Article  CAS  PubMed  Google Scholar 

  17. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA et al (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404(6776):398–402

    Article  CAS  PubMed  Google Scholar 

  18. Scott RB (1970) Cancer chemotherapy–the first twenty-five years. Br Med J 4(5730):259–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Auerbach C, Robson JM, Carr JG (1947) The chemical production of mutations. Science 105(2723):243–247

    Article  CAS  PubMed  Google Scholar 

  20. Kohn KW, Spears CL, Doty P (1966) Inter-strand crosslinking of DNA by nitrogen mustard. J Mol Biol 19(2):266–288

    Article  CAS  PubMed  Google Scholar 

  21. Ma GL, Murphy JD, Martinez ME, Sicklick JK (2015) Epidemiology of gastrointestinal stromal tumors in the era of histology codes: results of a population-based study. Cancer Epidemiol Biomarkers Prev 24(1):298–302

    Article  PubMed  Google Scholar 

  22. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580

    Article  CAS  PubMed  Google Scholar 

  23. Sircar K, Hewlett BR, Huizinga JD, Chorneyko K, Berezin I, Riddell RH (1999) Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. Am J Surg Pathol 23(4):377–389

    Article  CAS  PubMed  Google Scholar 

  24. Tran T, Davila JA, El-Serag HB (2005) The epidemiology of malignant gastrointestinal stromal tumors: an analysis of 1,458 cases from 1992 to 2000. Am J Gastroenterol 100(1):162–168

    Article  PubMed  Google Scholar 

  25. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 130(10):1466–1478

    CAS  PubMed  Google Scholar 

  26. Dematteo RP, Heinrich MC, El-Rifai WM, Demetri G (2002) Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol 33(5):466–477

    Article  CAS  PubMed  Google Scholar 

  27. Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY et al (2004) Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364(9440):1127–1134

    Article  CAS  PubMed  Google Scholar 

  28. Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, Benjamin RS et al (2008) Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol Official J Am Soc Clin Oncol 26(4):626–632

    Article  CAS  Google Scholar 

  29. Beghini A, Tibiletti MG, Roversi G, Chiaravalli AM, Serio G, Capella C et al (2001) Germline mutation in the juxtamembrane domain of the kit gene in a family with gastrointestinal stromal tumors and urticaria pigmentosa. Cancer 92(3):657–662

    Article  CAS  PubMed  Google Scholar 

  30. Robson ME, Glogowski E, Sommer G, Antonescu CR, Nafa K, Maki RG et al (2004) Pleomorphic characteristics of a germ-line KIT mutation in a large kindred with gastrointestinal stromal tumors, hyperpigmentation, and dysphagia. Clin Cancer Res Official J Am Assoc Cancer Res 10(4):1250–1254

    Article  CAS  Google Scholar 

  31. Maeyama H, Hidaka E, Ota H, Minami S, Kajiyama M, Kuraishi A et al (2001) Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology 120(1):210–215

    Article  CAS  PubMed  Google Scholar 

  32. Miettinen M, Fetsch JF, Sobin LH, Lasota J (2006) Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol 30(1):90–96

    Article  PubMed  Google Scholar 

  33. Mussi C, Schildhaus HU, Gronchi A, Wardelmann E, Hohenberger P (2008) Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. Clin Cancer Res official J Am Assoc Cancer Rese 14(14):4550–4555

    Article  CAS  Google Scholar 

  34. Zhang L, Smyrk TC, Young WF Jr, Stratakis CA, Carney JA (2010) Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am J Surg Pathol 34(1):53–64

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pasini B, McWhinney SR, Bei T, Matyakhina L, Stergiopoulos S, Muchow M et al (2008) Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 16(1):79–88

    Article  CAS  PubMed  Google Scholar 

  36. Gaal J, Stratakis CA, Carney JA, Ball ER, Korpershoek E, Lodish MB et al (2011) SDHB immunohistochemistry: a useful tool in the diagnosis of Carney-Stratakis and Carney triad gastrointestinal stromal tumors. Mod Pathol 24(1):147–151

    Article  CAS  PubMed  Google Scholar 

  37. Novelli M, Rossi S, Rodriguez-Justo M, Taniere P, Seddon B, Toffolatti L et al (2010) DOG1 and CD117 are the antibodies of choice in the diagnosis of gastrointestinal stromal tumours. Histopathology 57(2):259–270

    Article  PubMed  Google Scholar 

  38. Group ESESNW (2014) Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol Official J Euro Soc Med Oncol ESMO. 25(Suppl 3):iii21–6

    Google Scholar 

  39. Taniguchi M, Nishida T, Hirota S, Isozaki K, Ito T, Nomura T et al (1999) Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res 59(17):4297–4300

    CAS  PubMed  Google Scholar 

  40. Rubin BP, Singer S, Tsao C, Duensing A, Lux ML, Ruiz R et al (2001) KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 61(22):8118–8121

    CAS  PubMed  Google Scholar 

  41. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol Official J A Soc Clin Oncol 21(23):4342–4349

    Article  CAS  Google Scholar 

  42. Antonescu CR, Sommer G, Sarran L, Tschernyavsky SJ, Riedel E, Woodruff JM et al (2003) Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res Official J Am Assoc Cancer Res 9(9):3329–3337

    CAS  Google Scholar 

  43. Emile JF, Theou N, Tabone S, Cortez A, Terrier P, Chaumette MT et al (2004) Clinicopathologic, phenotypic, and genotypic characteristics of gastrointestinal mesenchymal tumors. Clin Gastroenterol Hepatol 2(7):597–605

    Article  PubMed  Google Scholar 

  44. Andersson J, Bumming P, Meis-Kindblom JM, Sihto H, Nupponen N, Joensuu H et al (2006) Gastrointestinal stromal tumors with KIT exon 11 deletions are associated with poor prognosis. Gastroenterology 130(6):1573–1581

    Article  CAS  PubMed  Google Scholar 

  45. Debiec-Rychter M, Sciot R, Le Cesne A, Schlemmer M, Hohenberger P, van Oosterom AT et al (2006) KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42(8):1093–1103

    Article  CAS  PubMed  Google Scholar 

  46. Corless CL, Schroeder A, Griffith D, Town A, McGreevey L, Harrell P et al (2005) PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol Official J Am Soc Clin Oncol 23(23):5357–5364

    Article  CAS  Google Scholar 

  47. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N et al (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299(5607):708–710

    Article  CAS  PubMed  Google Scholar 

  48. Matsui T, Heidaran M, Miki T, Popescu N, La Rochelle W, Kraus M et al (1989) Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243(4892):800–804

    Article  CAS  PubMed  Google Scholar 

  49. Linnekin D (1999) Early signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol 31(10):1053–1074

    Article  CAS  PubMed  Google Scholar 

  50. Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R (2003) Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol 23(9):3067–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma Y, Cunningham ME, Wang X, Ghosh I, Regan L, Longley BJ (1999) Inhibition of spontaneous receptor phosphorylation by residues in a putative alpha-helix in the KIT intracellular juxtamembrane region. J Biol Chem 274(19):13399–13402

    Article  CAS  PubMed  Google Scholar 

  52. Hou YY, Grabellus F, Weber F, Zhou Y, Tan YS, Li J et al (2009) Impact of KIT and PDGFRA gene mutations on prognosis of patients with gastrointestinal stromal tumors after complete primary tumor resection. J Gastrointest Surg. 13(9):1583–1592

    Article  PubMed  Google Scholar 

  53. Zhi X, Zhou X, Wang W, Xu Z (2013) Practical role of mutation analysis for imatinib treatment in patients with advanced gastrointestinal stromal tumors: a meta-analysis. PLoS ONE 8(11):e79275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lasota J, Kopczynski J, Sarlomo-Rikala M, Schneider-Stock R, Stachura T, Kordek R et al (2003) KIT 1530ins6 mutation defines a subset of predominantly malignant gastrointestinal stromal tumors of intestinal origin. Hum Pathol 34(12):1306–1312

    Article  CAS  PubMed  Google Scholar 

  55. Miettinen M, Makhlouf H, Sobin LH, Lasota J (2006) Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. Am J Surg Pathol 30(4):477–489

    Article  PubMed  Google Scholar 

  56. Lasota J, Wozniak A, Sarlomo-Rikala M, Rys J, Kordek R, Nassar A et al (2000) Mutations in exons 9 and 13 of KIT gene are rare events in gastrointestinal stromal tumors. A study of 200 cases. Am J Pathol 157(4):1091–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lasota J, Corless CL, Heinrich MC, Debiec-Rychter M, Sciot R, Wardelmann E et al (2008) Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: a multicenter study on 54 cases. Mod Pathol 21(4):476–484

    Article  CAS  PubMed  Google Scholar 

  58. Lasota J, Dansonka-Mieszkowska A, Sobin LH, Miettinen M (2004) A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab Invest 84(7):874–883

    Article  CAS  PubMed  Google Scholar 

  59. Wardelmann E, Hrychyk A, Merkelbach-Bruse S, Pauls K, Goldstein J, Hohenberger P et al (2004) Association of platelet-derived growth factor receptor alpha mutations with gastric primary site and epithelioid or mixed cell morphology in gastrointestinal stromal tumors. J Mol Diagn. 6(3):197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hirota S, Ohashi A, Nishida T, Isozaki K, Kinoshita K, Shinomura Y et al (2003) Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125(3):660–667

    Article  CAS  PubMed  Google Scholar 

  61. Lasota J, Stachura J, Miettinen M (2006) GISTs with PDGFRA exon 14 mutations represent subset of clinically favorable gastric tumors with epithelioid morphology. Lab Invest 86(1):94–100

    Article  CAS  PubMed  Google Scholar 

  62. Corless CL, Fletcher JA, Heinrich MC (2004) Biology of gastrointestinal stromal tumors. J Clin Oncol Official J Am Soc Clin Oncol 22(18):3813–3825

    Article  CAS  Google Scholar 

  63. Doyle LA, Nelson D, Heinrich MC, Corless CL, Hornick JL (2012) Loss of succinate dehydrogenase subunit B (SDHB) expression is limited to a distinctive subset of gastric wild-type gastrointestinal stromal tumours: a comprehensive genotype-phenotype correlation study. Histopathology 61(5):801–809

    Article  PubMed  Google Scholar 

  64. Janeway KA, Kim SY, Lodish M, Nose V, Rustin P, Gaal J et al (2011) Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 108(1):314–318

    Article  CAS  PubMed  Google Scholar 

  65. Celestino R, Lima J, Faustino A, Vinagre J, Maximo V, Gouveia A et al (2013) Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors. Eur J Hum Genet 21(5):503–510

    Article  CAS  PubMed  Google Scholar 

  66. Miettinen M, Killian JK, Wang ZF, Lasota J, Lau C, Jones L et al (2013) Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol 37(2):234–240

    Article  PubMed  PubMed Central  Google Scholar 

  67. Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J (2011) Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol 35(11):1712–1721

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pantaleo MA, Lolli C, Nannini M, Astolfi A, Indio V, Saponara M et al (2015) Good survival outcome of metastatic SDH-deficient gastrointestinal stromal tumors harboring SDHA mutations. Genet Med. 17(5):391–395

    Article  CAS  PubMed  Google Scholar 

  69. Pantaleo MA, Astolfi A, Urbini M, Nannini M, Paterini P, Indio V et al (2014) Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet 22(1):32–39

    Article  CAS  PubMed  Google Scholar 

  70. Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5(11):857–866

    Article  CAS  PubMed  Google Scholar 

  71. van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, de Bruyn EM et al (2009) An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 10(8):764–771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Gimenez-Roqueplo AP, Favier J, Rustin P, Mourad JJ, Plouin PF, Corvol P et al (2001) The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet 69(6):1186–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7(1):77–85

    Article  CAS  PubMed  Google Scholar 

  74. Osusky KL, Hallahan DE, Fu A, Ye F, Shyr Y, Geng L (2004) The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels. Angiogenesis 7(3):225–233

    Article  CAS  PubMed  Google Scholar 

  75. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res Official J Am Assoc Cancer Res 9(1):327–337

    CAS  Google Scholar 

  76. Tarn C, Rink L, Merkel E, Flieder D, Pathak H, Koumbi D et al (2008) Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci USA 105(24):8387–8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Beadling C, Patterson J, Justusson E, Nelson D, Pantaleo MA, Hornick JL et al (2013) Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA. Cancer Med. 2(1):21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Belinsky MG, Rink L, Flieder DB, Jahromi MS, Schiffman JD, Godwin AK et al (2013) Overexpression of insulin-like growth factor 1 receptor and frequent mutational inactivation of SDHA in wild-type SDHB-negative gastrointestinal stromal tumors. Genes Chromosom Cancer 52(2):214–224

    Article  CAS  PubMed  Google Scholar 

  79. Langer CJ, Novello S, Park K, Krzakowski M, Karp DD, Mok T et al (2014) Randomized, phase III trial of first-line figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in patients with advanced non-small-cell lung cancer. J Clin Oncol Official J Am Soc Clin Oncol 32(19):2059–2066

    Article  CAS  Google Scholar 

  80. Agaram NP, Wong GC, Guo T, Maki RG, Singer S, Dematteo RP et al (2008) Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosom Cancer 47(10):853–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  CAS  PubMed  Google Scholar 

  82. Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ et al (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol Official J Am Soc Clin Oncol 29(10):1239–1246

    Article  Google Scholar 

  83. Agaimy A, Terracciano LM, Dirnhofer S, Tornillo L, Foerster A, Hartmann A et al (2009) V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol 62(7):613–616

    Article  CAS  PubMed  Google Scholar 

  84. Hostein I, Faur N, Primois C, Boury F, Denard J, Emile JF et al (2010) BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol 133(1):141–148

    Article  CAS  PubMed  Google Scholar 

  85. Miranda C, Nucifora M, Molinari F, Conca E, Anania MC, Bordoni A et al (2012) KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res Official J Am Assoc Cancer Res 18(6):1769–1776

    Article  CAS  Google Scholar 

  86. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Falchook GS, Trent JC, Heinrich MC, Beadling C, Patterson J, Bastida CC et al (2013) BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget 4(2):310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Network. NCC (2015) NCCN clinical practice guidelines in oncology: gastrointestinal stromal tumors (GIST). Version 1.2015

    Google Scholar 

  89. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347(7):472–480

    Article  CAS  PubMed  Google Scholar 

  90. Heinrich MC, Owzar K, Corless CL, Hollis D, Borden EC, Fletcher CD et al (2008) Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by cancer and leukemia group B and southwest oncology group. J Clin Oncol Official J Am Soc Clin Oncol 26(33):5360–5367

    Article  CAS  Google Scholar 

  91. Gastrointestinal Stromal Tumor Meta-Analysis G (2010) Comparison of two doses of imatinib for the treatment of unrespectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J Clin Oncol Official J Am Soc Clin Oncol 28(7):1247–1253

    Google Scholar 

  92. Le Cesne A, Ray-Coquard I, Bui BN, Adenis A, Rios M, Bertucci F et al (2010) Discontinuation of imatinib in patients with advanced gastrointestinal stromal tumours after 3 years of treatment: an open-label multicentre randomised phase 3 trial. Lancet Oncol 11(10):942–949

    Article  PubMed  CAS  Google Scholar 

  93. Debiec-Rychter M, Dumez H, Judson I, Wasag B, Verweij J, Brown M et al (2004) Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC soft tissue and bone sarcoma group. Eur J Cancer 40(5):689–695

    Article  CAS  PubMed  Google Scholar 

  94. Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ et al (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol Official J Am Soc Clin Oncol 24(29):4764–4774

    Article  CAS  Google Scholar 

  95. Cassier PA, Fumagalli E, Rutkowski P, Schoffski P, Van Glabbeke M, Debiec-Rychter M et al (2012) Outcome of patients with platelet-derived growth factor receptor alpha-mutated gastrointestinal stromal tumors in the tyrosine kinase inhibitor era. Clin Cancer Res Official J Am Assoc Cancer Res 18(16):4458–4464

    Article  CAS  Google Scholar 

  96. Dewaele B, Wasag B, Cools J, Sciot R, Prenen H, Vandenberghe P et al (2008) Activity of dasatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRAD842 V mutation. Clin Cancer Res Official J Am Assoc Cancer Res 14(18):5749–5758

    Article  CAS  Google Scholar 

  97. Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D et al (2008) Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol Official J Am Soc Clin Oncol 26(33):5352–5359

    Article  CAS  Google Scholar 

  98. Van Glabbeke MM, Owzar K, Rankin C, Simes J, Crowley J, GIST Meta-analysis Group (2007) Comparison of two doses of imatinib for the treatment of unrespectable or metastatic gastrointestinal stromal tumors (GIST): A meta-analysis based on 1,640 patients (pts). J Clin Oncol Official J Am Soc Clin Oncol 25(18 suppl 10004)

    Google Scholar 

  99. Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H et al (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295–302

    Article  CAS  PubMed  Google Scholar 

  100. Park SH, Ryu MH, Ryoo BY, Im SA, Kwon HC, Lee SS et al (2012) Sorafenib in patients with metastatic gastrointestinal stromal tumors who failed two or more prior tyrosine kinase inhibitors: a phase II study of Korean gastrointestinal stromal tumors study group. Invest New Drugs 30(6):2377–2383

    Article  CAS  PubMed  Google Scholar 

  101. Kindler HL, Campbell NP, Wroblewski K, Maki RG, D’Adamo DR, Chow WA, Gandara DR, Antonescu C, Stadler WM, Vokes EE (2011) Sorafenib (SOR) in patients (pts) with imatinib (IM) and sunitinib (SU)-resistant (RES) gastrointestinal stromal tumors (GIST): final results of a University of Chicago Phase II Consortium trial. J Clin Oncol Official J Am Soc Clin Oncol 29(Suppl; Abstr 10009)

    Google Scholar 

  102. Corless CL, Ballman KV, Antonescu CR, Kolesnikova V, Maki RG, Pisters PW et al (2014) Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9001 trial. J Clin Oncol Official J Am Soc Clin Oncol 32(15):1563–1570

    Article  CAS  Google Scholar 

  103. Schittenhelm MM, Shiraga S, Schroeder A, Corbin AS, Griffith D, Lee FY et al (2006) Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 66(1):473–481

    Article  CAS  PubMed  Google Scholar 

  104. Pantaleo MA, Nannini M, Saponara M, Gnocchi C, Di Scioscio V, Lolli C et al (2012) Impressive long-term disease stabilization by nilotinib in two pretreated patients with KIT/PDGFRA wild-type metastatic gastrointestinal stromal tumours. Anticancer Drugs 23(5):567–572

    Article  CAS  PubMed  Google Scholar 

  105. Blanke CD, Demetri GD, von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA et al (2008) Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unrespectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol Official J Am Soc Clin Oncol 26(4):620–625

    Article  CAS  Google Scholar 

  106. Antonescu CR, Besmer P, Guo T, Arkun K, Hom G, Koryotowski B et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res Official J Am Assoc Cancer Res 11(11):4182–4190

    Article  CAS  Google Scholar 

  107. Debiec-Rychter M, Cools J, Dumez H, Sciot R, Stul M, Mentens N et al (2005) Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128(2):270–279

    Article  CAS  PubMed  Google Scholar 

  108. Zalcberg JR, Verweij J, Casali PG, Le Cesne A, Reichardt P, Blay JY et al (2005) Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eur J Cancer 41(12):1751–1757

    Article  CAS  PubMed  Google Scholar 

  109. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368(9544):1329–1338

    Article  CAS  PubMed  Google Scholar 

  110. Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM (2003) SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2(5):471–478

    Article  CAS  PubMed  Google Scholar 

  111. Murray LJ, Abrams TJ, Long KR, Ngai TJ, Olson LM, Hong W et al (2003) SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis 20(8):757–766

    Article  CAS  PubMed  Google Scholar 

  112. Guo T, Hajdu M, Agaram NP, Shinoda H, Veach D, Clarkson BD et al (2009) Mechanisms of sunitinib resistance in gastrointestinal stromal tumors harboring KITAY502-3ins mutation: an in vitro mutagenesis screen for drug resistance. Clin Cancer Res Official J Am Assoc Cancer Res 15(22):6862–6870

    Article  CAS  Google Scholar 

  113. DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF (2000) Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 231(1):51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Agaimy A, Wunsch PH, Hofstaedter F, Blaszyk H, Rummele P, Gaumann A et al (2007) Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c-KIT mutations. Am J Surg Pathol 31(1):113–120

    Article  PubMed  Google Scholar 

  115. Sepe PS, Brugge WR (2009) A guide for the diagnosis and management of gastrointestinal stromal cell tumors. Nat Rev Gastroenterol Hepatol 6(6):363–371

    Article  PubMed  Google Scholar 

  116. Agaimy A, Wunsch PH (2009) Lymph node metastasis in gastrointestinal stromal tumours (GIST) occurs preferentially in young patients ≤40 years: an overview based on our case material and the literature. Langenbecks Arch Surg. 394(2):375–381

    Article  PubMed  Google Scholar 

  117. McCarter MD, Antonescu CR, Ballman KV, Maki RG, Pisters PW, Demetri GD et al (2012) Microscopically positive margins for primary gastrointestinal stromal tumors: analysis of risk factors and tumor recurrence. J Am Coll Surg 215(1):53–59 (discussion 9–60)

    Google Scholar 

  118. Hohenberger P, Ronellenfitsch U, Oladeji O, Pink D, Strobel P, Wardelmann E et al (2010) Pattern of recurrence in patients with ruptured primary gastrointestinal stromal tumour. Br J Surg 97(12):1854–1859

    Article  CAS  PubMed  Google Scholar 

  119. Rutkowski P, Nowecki ZI, Michej W, Debiec-Rychter M, Wozniak A, Limon J et al (2007) Risk criteria and prognostic factors for predicting recurrences after resection of primary gastrointestinal stromal tumor. Ann Surg Oncol 14(7):2018–2027

    Article  PubMed  Google Scholar 

  120. Novitsky YW, Kercher KW, Sing RF, Heniford BT (2006) Long-term outcomes of laparoscopic resection of gastric gastrointestinal stromal tumors. Ann Surg 243(6):738–745 (discussion 45–47)

    Google Scholar 

  121. Dematteo RP, Ballman KV, Antonescu CR, Maki RG, Pisters PW, Demetri GD et al (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373(9669):1097–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Joensuu H (2008) Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Hum Pathol 39(10):1411–1419

    Article  PubMed  Google Scholar 

  123. Joensuu H, Eriksson M, Sundby Hall K, Hartmann JT, Pink D, Schutte J et al (2012) One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA 307(12):1265–1272

    Article  CAS  PubMed  Google Scholar 

  124. Blesius A, Cassier PA, Bertucci F, Fayette J, Ray-Coquard I, Bui B et al (2011) Neoadjuvant imatinib in patients with locally advanced non metastatic GIST in the prospective BFR14 trial. BMC Cancer 11:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fiore M, Palassini E, Fumagalli E, Pilotti S, Tamborini E, Stacchiotti S et al (2009) Preoperative imatinib mesylate for unresectable or locally advanced primary gastrointestinal stromal tumors (GIST). Eur J Surg Oncol 35(7):739–745

    Article  CAS  PubMed  Google Scholar 

  126. Antoch G, Kanja J, Bauer S, Kuehl H, Renzing-Koehler K, Schuette J et al (2004) Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med 45(3):357–365

    CAS  PubMed  Google Scholar 

  127. Shinto A, Nair N, Dutt A, Baghel NS (2008) Early response assessment in gastrointestinal stromal tumors with FDG PET scan 24 hours after a single dose of imatinib. Clin Nucl Med 33(7):486–487

    Article  PubMed  Google Scholar 

  128. Gayed I, Vu T, Iyer R, Johnson M, Macapinlac H, Swanston N et al (2004) The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 45(1):17–21

    CAS  PubMed  Google Scholar 

  129. Bonvalot S, Eldweny H, Pechoux CL, Vanel D, Terrier P, Cavalcanti A et al (2006) Impact of surgery on advanced gastrointestinal stromal tumors (GIST) in the imatinib era. Ann Surg Oncol 13(12):1596–1603

    Article  CAS  PubMed  Google Scholar 

  130. Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG et al (2010) NCCN task force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Canc Netw 8(Suppl 2):S1–S41 (quiz S2-4)

    Google Scholar 

  131. Blay JY, Le Cesne A, Ray-Coquard I, Bui B, Duffaud F, Delbaldo C et al (2007) Prospective multicentric randomized phase III study of imatinib in patients with advanced gastrointestinal stromal tumors comparing interruption versus continuation of treatment beyond 1 year: the French Sarcoma Group. J Clin Oncol Official J Am Soc Clin Oncol 25(9):1107–1113

    Article  CAS  Google Scholar 

  132. Van Den Abbeele AD, Badawi, RD, Manola J, Morgan JA, Desai J, Kazanovicz A, St. Armand M, Baum C, Demetri GD (2004) Effects of cessation of imatinib mesylate (IM) therapy in patients (pts) with IM-refractory gastrointestinal stromal tumors (GIST) as visualized by FDG-PET scanning. In: 2004 ASCO annual meeting proceedings (post-meeting edition), vol 22, (No 14S (July 15 Supplement)) (Journal of Clinical Oncology)

    Google Scholar 

  133. DeMatteo RP, Maki RG, Singer S, Gonen M, Brennan MF, Antonescu CR (2007) Results of tyrosine kinase inhibitor therapy followed by surgical resection for metastatic gastrointestinal stromal tumor. Ann Surg 245(3):347–352

    Article  PubMed  PubMed Central  Google Scholar 

  134. Gronchi A, Fiore M, Miselli F, Lagonigro MS, Coco P, Messina A et al (2007) Surgery of residual disease following molecular-targeted therapy with imatinib mesylate in advanced/metastatic GIST. Ann Surg 245(3):341–346

    Article  PubMed  PubMed Central  Google Scholar 

  135. Prescribing instructions for Sutent (sunitinib) (2015) Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021938s13s17s18lbl.pdf

  136. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schutz G et al (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer J Int Du Cancer 129(1):245–255

    Article  CAS  Google Scholar 

  137. Prescribing instructions for Stivarga (regorafenib) (2015) Available from: http://labeling.bayerhealthcare.com/html/products/pi/Stivarga_PI.pdf

  138. Hampel H, de la Chapelle A (2011) The search for unaffected individuals with Lynch syndrome: do the ends justify the means? Cancer Prev Res (Phila). 4(1):1–5

    Google Scholar 

  139. Barnetson RA, Tenesa A, Farrington SM, Nicholl ID, Cetnarskyj R, Porteous ME et al (2006) Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med 354(26):2751–2763

    Article  CAS  PubMed  Google Scholar 

  140. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P et al (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352(18):1851–1860

    Article  CAS  PubMed  Google Scholar 

  141. Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW et al (2014) Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer. Am J Gastroenterol 109(8):1159–1179

    Article  PubMed  Google Scholar 

  142. Green RC, Parfrey PS, Woods MO, Younghusband HB (2009) Prediction of Lynch syndrome in consecutive patients with colorectal cancer. J Natl Cancer Inst 101(5):331–340

    Article  PubMed  Google Scholar 

  143. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P et al (2008) Feasibility of screening for lynch syndrome among patients with colorectal cancer. J Clin Oncol Official J Am Soc Clin Oncol 26(35):5783–5788

    Article  Google Scholar 

  144. Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW et al (2015) ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 110(2):223–262 (quiz 63)

    Google Scholar 

  145. McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ, Walsh MD et al (2004) Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer 3(2):101–107

    Article  CAS  PubMed  Google Scholar 

  146. Roth RM, Hampel H, Arnold CA, Yearsley MM, Marsh WL, Frankel WL (2015) A modified Lynch syndrome screening algorithm in colon cancer: BRAF immunohistochemistry is efficacious and cost beneficial. Am J Clin Pathol 143(3):336–343

    Article  CAS  PubMed  Google Scholar 

  147. Ladabaum U, Wang G, Terdiman J, Blanco A, Kuppermann M, Boland CR et al (2011) Strategies to identify the lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann Intern Med 155(2):69–79

    Article  PubMed  PubMed Central  Google Scholar 

  148. Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116(6):1453–1456

    Article  CAS  PubMed  Google Scholar 

  149. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J et al (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN (2009) EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from lynch syndrome. Genet Med 11(1):42–65

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41(1):112–117

    Article  CAS  PubMed  Google Scholar 

  152. Ligtenberg MJ, Kuiper RP, Geurts van Kessel A, Hoogerbrugge N (2013) EPCAM deletion carriers constitute a unique subgroup of Lynch syndrome patients. Fam Cancer 12(2):169–174

    Google Scholar 

  153. Peltomaki P, Vasen H (2004) Mutations associated with HNPCC predisposition—update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 20(4–5):269–276

    Article  PubMed  PubMed Central  Google Scholar 

  154. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087 e3

    Google Scholar 

  155. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38(7):787–793

    Article  CAS  PubMed  Google Scholar 

  156. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96(15):8681–8686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Niessen RC, Hofstra RM, Westers H, Ligtenberg MJ, Kooi K, Jager PO et al (2009) Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome. Genes Chromosom Cancer 48(8):737–744

    Article  CAS  PubMed  Google Scholar 

  158. Hendriks YM, de Jong AE, Morreau H, Tops CM, Vasen HF, Wijnen JT et al (2006) Diagnostic approach and management of Lynch syndrome (hereditary nonpolyposis colorectal carcinoma): a guide for clinicians. CA Cancer J Clin 56(4):213–225

    Article  PubMed  Google Scholar 

  159. Barrow E, Alduaij W, Robinson L, Shenton A, Clancy T, Lalloo F et al (2008) Colorectal cancer in HNPCC: cumulative lifetime incidence, survival and tumour distribution. A report of 121 families with proven mutations. Clin Genet 74(3):233–242

    Article  CAS  PubMed  Google Scholar 

  160. Capelle LG, Van Grieken NC, Lingsma HF, Steyerberg EW, Klokman WJ, Bruno MJ et al (2010) Risk and epidemiological time trends of gastric cancer in lynch syndrome carriers in the Netherlands. Gastroenterology 138(2):487–492

    Article  PubMed  Google Scholar 

  161. Bonadona V, Bonaiti B, Olschwang S, Grandjouan S, Huiart L, Longy M et al (2011) Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in lynch syndrome. JAMA 305(22):2304–2310

    Article  CAS  PubMed  Google Scholar 

  162. Dunlop MG, Farrington SM, Carothers AD, Wyllie AH, Sharp L, Burn J et al (1997) Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet 6(1):105–110

    Article  CAS  PubMed  Google Scholar 

  163. Choi YH, Cotterchio M, McKeown-Eyssen G, Neerav M, Bapat B, Boyd K et al (2009) Penetrance of colorectal cancer among MLH1/MSH2 carriers participating in the colorectal cancer familial registry in Ontario. Hered Cancer Clin Pract 7(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Edelstein DL, Axilbund J, Baxter M, Hylind LM, Romans K, Griffin CA et al (2011) Rapid development of colorectal neoplasia in patients with Lynch syndrome. Clin Gastroenterol Hepatol. 9(4):340–343

    Article  PubMed  Google Scholar 

  165. Borras E, Pineda M, Cadinanos J, Del Valle J, Brieger A, Hinrichsen I et al (2013) Refining the role of PMS2 in Lynch syndrome: germline mutational analysis improved by comprehensive assessment of variants. J Med Genet 50(8):552–563

    Article  CAS  PubMed  Google Scholar 

  166. Baglietto L, Lindor NM, Dowty JG, White DM, Wagner A, Gomez Garcia EB et al (2010) Risks of Lynch syndrome cancers for MSH6 mutation carriers. J Natl Cancer Inst 102(3):193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Smyrk TC, Watson P, Kaul K, Lynch HT (2001) Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91(12):2417–2422

    Article  CAS  PubMed  Google Scholar 

  168. Mecklin JP, Sipponen P, Jarvinen HJ (1986) Histopathology of colorectal carcinomas and adenomas in cancer family syndrome. Dis Colon Rectum 29(12):849–853

    Article  CAS  PubMed  Google Scholar 

  169. Hofstad B, Vatn M (1997) Growth rate of colon polyps and cancer. Gastrointest Endosc Clin N Am 7(3):345–363

    CAS  PubMed  Google Scholar 

  170. Winawer SJ, Zauber AG, Ho MN, O’Brien MJ, Gottlieb LS, Sternberg SS et al (1993) Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med 329(27):1977–1981

    Article  CAS  PubMed  Google Scholar 

  171. Jass JR, Walsh MD, Barker M, Simms LA, Young J, Leggett BA (2002) Distinction between familial and sporadic forms of colorectal cancer showing DNA microsatellite instability. Eur J Cancer 38(7):858–866

    Article  CAS  PubMed  Google Scholar 

  172. Salahshor S, Koelble K, Rubio C, Lindblom A (2001) Microsatellite Instability and hMLH1 and hMSH2 expression analysis in familial and sporadic colorectal cancer. Lab Invest 81(4):535–541

    Article  CAS  PubMed  Google Scholar 

  173. Pylvanainen K, Lehtinen T, Kellokumpu I, Jarvinen H, Mecklin JP (2012) Causes of death of mutation carriers in finnish lynch syndrome families. Fam Cancer 11(3):467–471

    Article  PubMed  Google Scholar 

  174. Jarvinen HJ, Renkonen-Sinisalo L, Aktan-Collan K, Peltomaki P, Aaltonen LA, Mecklin JP (2009) Ten years after mutation testing for Lynch syndrome: cancer incidence and outcome in mutation-positive and mutation-negative family members. J Clin Oncol Official J Am Soc Clin Oncol 27(28):4793–4797

    Article  Google Scholar 

  175. Burn J, Bishop DT, Mecklin JP, Macrae F, Moslein G, Olschwang S et al (2008) Effect of aspirin or resistant starch on colorectal neoplasia in the lynch syndrome. N Engl J Med 359(24):2567–2578

    Article  CAS  PubMed  Google Scholar 

  176. Burn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G, Olschwang S et al (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378(9809):2081–2087

    Article  PubMed  PubMed Central  Google Scholar 

  177. Jarvinen HJ, Aarnio M, Mustonen H, Aktan-Collan K, Aaltonen LA, Peltomaki P et al (2000) Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology 118(5):829–834

    Article  CAS  PubMed  Google Scholar 

  178. Stuckless S, Green JS, Morgenstern M, Kennedy C, Green RC, Woods MO et al (2012) Impact of colonoscopic screening in male and female Lynch syndrome carriers with an MSH2 mutation. Clin Genet 82(5):439–445

    Article  CAS  PubMed  Google Scholar 

  179. Dove-Edwin I, Sasieni P, Adams J, Thomas HJ (2005) Prevention of colorectal cancer by colonoscopic surveillance in individuals with a family history of colorectal cancer: 16 year, prospective, follow-up study. BMJ 331(7524):1047

    Article  PubMed  PubMed Central  Google Scholar 

  180. Senter L, Clendenning M, Sotamaa K, Hampel H, Green J, Potter JD et al (2008) The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 135(2):419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. de Vos tot Nederveen Cappel WH, Nagengast FM, Griffioen G, Menko FH, Taal BG, Kleibeuker JH et al (2002) Surveillance for hereditary nonpolyposis colorectal cancer: a long-term study on 114 families. Dis Colon Rectum 45(12):1588–1594

    Google Scholar 

  182. Parry S, Win AK, Parry B, Macrae FA, Gurrin LC, Church JM et al (2011) Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut 60(7):950–957

    Article  PubMed  Google Scholar 

  183. Win AK, Parry S, Parry B, Kalady MF, Macrae FA, Ahnen DJ et al (2013) Risk of metachronous colon cancer following surgery for rectal cancer in mismatch repair gene mutation carriers. Ann Surg Oncol 20(6):1829–1836

    Article  PubMed  PubMed Central  Google Scholar 

  184. de Vos tot Nederveen Cappel WH, Buskens E, van Duijvendijk P, Cats A, Menko FH, Griffioen G et al (2003) Decision analysis in the surgical treatment of colorectal cancer due to a mismatch repair gene defect. Gut 52(12):1752–1755

    Google Scholar 

  185. Vasen HF, Moslein G, Alonso A, Aretz S, Bernstein I, Bertario L et al (2008) Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut 57(5):704–713

    Article  CAS  PubMed  Google Scholar 

  186. Bodmer WF, Bailey CJ, Bodmer J, Bussey HJ, Ellis A, Gorman P et al (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328(6131):614–616

    Article  CAS  PubMed  Google Scholar 

  187. Bisgaard ML, Fenger K, Bulow S, Niebuhr E, Mohr J (1994) Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat 3(2):121–125

    Article  CAS  PubMed  Google Scholar 

  188. Lynch HT, Smyrk TC, Lanspa SJ, Lynch PM, Watson P, Strayhorn PC et al (1990) Phenotypic variation in colorectal adenoma/cancer expression in two families. Hereditary flat adenoma syndrome. Cancer 66(5):909–915

    Article  CAS  PubMed  Google Scholar 

  189. Lynch HT, Smyrk T, McGinn T, Lanspa S, Cavalieri J, Lynch J et al (1995) Attenuated familial adenomatous polyposis (AFAP). A phenotypically and genotypically distinctive variant of FAP. Cancer 76(12):2427–2433

    Article  CAS  PubMed  Google Scholar 

  190. Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA et al (2004) Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology 127(2):444–451

    Article  PubMed  Google Scholar 

  191. Aretz S, Uhlhaas S, Goergens H, Siberg K, Vogel M, Pagenstecher C et al (2006) MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int J Cancer J Int Du Cancer 119(4):807–814

    Article  CAS  Google Scholar 

  192. Brosens LA, van Hattem WA, Jansen M, de Leng WW, Giardiello FM, Offerhaus GJ (2007) Gastrointestinal polyposis syndromes. Curr Mol Med 7(1):29–46

    Article  CAS  PubMed  Google Scholar 

  193. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  CAS  PubMed  Google Scholar 

  194. Chung DC (2000) The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology 119(3):854–865

    Article  CAS  PubMed  Google Scholar 

  195. Aretz S, Uhlhaas S, Caspari R, Mangold E, Pagenstecher C, Propping P et al (2004) Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet 12(1):52–58

    Article  CAS  PubMed  Google Scholar 

  196. Groves C, Lamlum H, Crabtree M, Williamson J, Taylor C, Bass S et al (2002) Mutation cluster region, association between germline and somatic mutations and genotype-phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathol 160(6):2055–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kohler EM, Derungs A, Daum G, Behrens J, Schneikert J (2008) Functional definition of the mutation cluster region of adenomatous polyposis coli in colorectal tumours. Hum Mol Genet 17(13):1978–1987

    Article  CAS  PubMed  Google Scholar 

  198. Nagase H, Nakamura Y (1993) Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat 2(6):425–434

    Article  CAS  PubMed  Google Scholar 

  199. Giardiello FM, Hamilton SR, Krush AJ, Piantadosi S, Hylind LM, Celano P et al (1993) Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328(18):1313–1316

    Article  CAS  PubMed  Google Scholar 

  200. Giardiello FM, Yang VW, Hylind LM, Krush AJ, Petersen GM, Trimbath JD et al (2002) Primary chemoprevention of familial adenomatous polyposis with sulindac. N Engl J Med 346(14):1054–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Boon EM, Keller JJ, Wormhoudt TA, Giardiello FM, Offerhaus GJ, van der Neut R et al (2004) Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer 90(1):224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pasricha PJ, Bedi A, O’Connor K, Rashid A, Akhtar AJ, Zahurak ML et al (1995) The effects of sulindac on colorectal proliferation and apoptosis in familial adenomatous polyposis. Gastroenterology 109(3):994–998

    Article  CAS  PubMed  Google Scholar 

  203. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E et al (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87(5):803–809

    Article  CAS  PubMed  Google Scholar 

  204. Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342(26):1946–1952

    Article  CAS  PubMed  Google Scholar 

  205. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P et al (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352(11):1071–1080

    Article  CAS  PubMed  Google Scholar 

  206. Solomon SD, Wittes J, Finn PV, Fowler R, Viner J, Bertagnolli MM et al (2008) Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: the cross trial safety analysis. Circulation 117(16):2104–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Baron JA, Sandler RS, Bresalier RS, Lanas A, Morton DG, Riddell R et al (2008) Cardiovascular events associated with rofecoxib: final analysis of the APPROVe trial. Lancet 372(9651):1756–1764

    Article  CAS  PubMed  Google Scholar 

  208. Burn J, Bishop DT, Chapman PD, Elliott F, Bertario L, Dunlop MG et al (2011) A randomized placebo-controlled prevention trial of aspirin and/or resistant starch in young people with familial adenomatous polyposis. Cancer Prev Res (Phila) 4(5):655–665

    Article  CAS  Google Scholar 

  209. Heiskanen I, Luostarinen T, Jarvinen HJ (2000) Impact of screening examinations on survival in familial adenomatous polyposis. Scand J Gastroenterol 35(12):1284–1287

    Article  CAS  PubMed  Google Scholar 

  210. Gibbons DC, Sinha A, Phillips RK, Clark SK (2011) Colorectal cancer: no longer the issue in familial adenomatous polyposis? Fam Cancer 10(1):11–20

    Google Scholar 

  211. Mallinson EK, Newton KF, Bowen J, Lalloo F, Clancy T, Hill J et al (2010) The impact of screening and genetic registration on mortality and colorectal cancer incidence in familial adenomatous polyposis. Gut 59(10):1378–1382

    Article  CAS  PubMed  Google Scholar 

  212. Cairns SR, Scholefield JH, Steele RJ, Dunlop MG, Thomas HJ, Evans GD et al (2010) Guidelines for colorectal cancer screening and surveillance in moderate and high risk groups (update from 2002). Gut 59(5):666–689

    Article  PubMed  Google Scholar 

  213. Cleary SP, Cotterchio M, Jenkins MA, Kim H, Bristow R, Green R et al (2009) Germline MutY human homologue mutations and colorectal cancer: a multisite case-control study. Gastroenterology 136(4):1251–1260

    Article  CAS  PubMed  Google Scholar 

  214. Nielsen M, de Miranda NF, van Puijenbroek M, Jordanova ES, Middeldorp A, van Wezel T et al (2009) Colorectal carcinomas in MUTYH-associated polyposis display histopathological similarities to microsatellite unstable carcinomas. BMC Cancer 9:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Soravia C, Berk T, Madlensky L, Mitri A, Cheng H, Gallinger S et al (1998) Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet 62(6):1290–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hegde M, Ferber M, Mao R, Samowitz W, Ganguly A, Working Group of the American College of Medical G et al (2014) ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis). Genet Med 16(1):101–116

    Google Scholar 

  217. Knudsen AL, Bisgaard ML, Bulow S (2003) Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer 2(1):43–55

    Article  PubMed  Google Scholar 

  218. Nielsen M, Joerink-van de Beld MC, Jones N, Vogt S, Tops CM, Vasen HF et al (2009) Analysis of MUTYH genotypes and colorectal phenotypes in patients With MUTYH-associated polyposis. Gastroenterology 136(2):471–476

    Article  CAS  PubMed  Google Scholar 

  219. Church J, Burke C, McGannon E, Pastean O, Clark B (2003) Risk of rectal cancer in patients after colectomy and ileorectal anastomosis for familial adenomatous polyposis: a function of available surgical options. Dis Colon Rectum 46(9):1175–1181

    Article  PubMed  Google Scholar 

  220. De Cosse JJ, Bulow S, Neale K, Jarvinen H, Alm T, Hultcrantz R et al (1992) Rectal cancer risk in patients treated for familial adenomatous polyposis. The leeds castle polyposis group. Br J Surg 79(12):1372–1375

    Article  PubMed  Google Scholar 

  221. Bjork JA, Akerbrant HI, Iselius LE, Hultcrantz RW (2000) Risk factors for rectal cancer morbidity and mortality in patients with familial adenomatous polyposis after colectomy and ileorectal anastomosis. Dis Colon Rectum 43(12):1719–1725

    Article  CAS  PubMed  Google Scholar 

  222. Nieuwenhuis MH, Bulow S, Bjork J, Jarvinen HJ, Bulow C, Bisgaard ML et al (2009) Genotype predicting phenotype in familial adenomatous polyposis: a practical application to the choice of surgery. Dis Colon Rectum 52(7):1259–1263

    Article  PubMed  Google Scholar 

  223. Vasen HF, van der Luijt RB, Slors JF, Buskens E, de Ruiter P, Baeten CG et al (1996) Molecular genetic tests as a guide to surgical management of familial adenomatous polyposis. Lancet 348(9025):433–435

    Article  CAS  PubMed  Google Scholar 

  224. Friedl W, Caspari R, Sengteller M, Uhlhaas S, Lamberti C, Jungck M et al (2001) Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families. Gut 48(4):515–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Cornish JA, Tan E, Teare J, Teoh TG, Rai R, Darzi AW et al (2007) The effect of restorative proctocolectomy on sexual function, urinary function, fertility, pregnancy and delivery: a systematic review. Dis Colon Rectum 50(8):1128–1138

    Article  PubMed  Google Scholar 

  226. Church JM, Fazio VW, Lavery IC, Oakley JR, Milsom J, McGannon E (1996) Quality of life after prophylactic colectomy and ileorectal anastomosis in patients with familial adenomatous polyposis. Dis Colon Rectum 39(12):1404–1408

    Article  CAS  PubMed  Google Scholar 

  227. Olsen KO, Juul S, Bulow S, Jarvinen HJ, Bakka A, Bjork J et al (2003) Female fecundity before and after operation for familial adenomatous polyposis. Br J Surg 90(2):227–231

    Article  CAS  PubMed  Google Scholar 

  228. Soravia C, Klein L, Berk T, O’Connor BI, Cohen Z, McLeod RS (1999) Comparison of ileal pouch-anal anastomosis and ileorectal anastomosis in patients with familial adenomatous polyposis. Dis Colon Rectum. 42(8):1028–1033 (discussion 33–34)

    Google Scholar 

  229. Chow E, Macrae F (2005) A review of juvenile polyposis syndrome. J Gastroenterol Hepatol 20(11):1634–1640

    Article  CAS  PubMed  Google Scholar 

  230. McColl I, Busxey HJ, Veale AM, Morson BC (1964) Juvenile polyposis coli. Proc R Soc Med 57:896–897

    CAS  PubMed  Google Scholar 

  231. Coburn MC, Pricolo VE, DeLuca FG, Bland KI (1995) Malignant potential in intestinal juvenile polyposis syndromes. Ann Surg Oncol 2(5):386–391

    Article  CAS  PubMed  Google Scholar 

  232. Desai DC, Murday V, Phillips RK, Neale KF, Milla P, Hodgson SV (1998) A survey of phenotypic features in juvenile polyposis. J Med Genet 35(6):476–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Veale AM, McColl I, Bussey HJ, Morson BC (1966) Juvenile polyposis coli. J Med Genet 3(1):5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Giardiello FM, Offerhaus JG (1995) Phenotype and cancer risk of various polyposis syndromes. Eur J Cancer 31A(7–8):1085–1087

    Article  CAS  PubMed  Google Scholar 

  235. Brosens LA, Langeveld D, van Hattem WA, Giardiello FM, Offerhaus GJ (2011) Juvenile polyposis syndrome. World J Gastroenterol 17(44):4839–4844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Hofting I, Pott G, Stolte M (1993) The syndrome of juvenile polyposis. Leber Magen Darm 23(3):107–108 (11–120

    Google Scholar 

  237. Howe JR, Mitros FA, Summers RW (1998) The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann Surg Oncol 5(8):751–756

    Article  CAS  PubMed  Google Scholar 

  238. Murday V, Slack J (1989) Inherited disorders associated with colorectal cancer. Cancer Surv 8(1):139–157

    CAS  PubMed  Google Scholar 

  239. Jass JR, Williams CB, Bussey HJ, Morson BC (1988) Juvenile polyposis–a precancerous condition. Histopathology 13(6):619–630

    Article  CAS  PubMed  Google Scholar 

  240. Latchford AR, Neale K, Phillips RK, Clark SK (2012) Juvenile polyposis syndrome: a study of genotype, phenotype, and long-term outcome. Dis Colon Rectum 55(10):1038–1043

    Article  PubMed  Google Scholar 

  241. Sayed MG, Ahmed AF, Ringold JR, Anderson ME, Bair JL, Mitros FA et al (2002) Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann Surg Oncol 9(9):901–906

    Article  CAS  PubMed  Google Scholar 

  242. Howe JR, Sayed MG, Ahmed AF, Ringold J, Larsen-Haidle J, Merg A et al (2004) The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet 41(7):484–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sweet K, Willis J, Zhou XP, Gallione C, Sawada T, Alhopuro P et al (2005) Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA 294(19):2465–2473

    Article  CAS  PubMed  Google Scholar 

  244. Howe JR, Haidle JL, Lal G, Bair J, Song C, Pechman B et al (2007) ENG mutations in MADH4/BMPR1A mutation negative patients with juvenile polyposis. Clin Genet 71(1):91–92

    Article  CAS  PubMed  Google Scholar 

  245. van Hattem WA, Brosens LA, de Leng WW, Morsink FH, Lens S, Carvalho R et al (2008) Large genomic deletions of SMAD4, BMPR1A and PTEN in juvenile polyposis. Gut 57(5):623–627

    Article  PubMed  CAS  Google Scholar 

  246. Calva-Cerqueira D, Chinnathambi S, Pechman B, Bair J, Larsen-Haidle J, Howe JR (2009) The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet 75(1):79–85

    Article  CAS  PubMed  Google Scholar 

  247. Howe JLHaJR. GeneReviews® [Internet]. In: Pagon RA, editor. Juvenile Polyposis Syndrome2014

    Google Scholar 

  248. Howe JR, Ringold JC, Summers RW, Mitros FA, Nishimura DY, Stone EM (1998) A gene for familial juvenile polyposis maps to chromosome 18q21.1. Am J Hum Genet 62(5):1129–1136

    Google Scholar 

  249. Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P et al (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280(5366):1086–1088

    Article  CAS  PubMed  Google Scholar 

  250. Wang J, Sun L, Myeroff L, Wang X, Gentry LE, Yang J et al (1995) Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem 270(37):22044–22049

    Article  CAS  PubMed  Google Scholar 

  251. Massague J (1996) TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 85(7):947–950

    Article  CAS  PubMed  Google Scholar 

  252. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L et al (1996) MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85(4):489–500

    Article  CAS  PubMed  Google Scholar 

  253. Gold LI (1999) The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 10(4):303–360

    CAS  PubMed  Google Scholar 

  254. Liu F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM et al (1996) A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381(6583):620–623

    Article  CAS  PubMed  Google Scholar 

  255. Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S et al (2004) A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363(9412):852–859

    Article  CAS  PubMed  Google Scholar 

  256. Aretz S, Stienen D, Uhlhaas S, Stolte M, Entius MM, Loff S et al (2007) High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet 44(11):702–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Aytac E, Sulu B, Heald B, O’Malley M, LaGuardia L, Remzi FH et al (2015) Genotype-defined cancer risk in juvenile polyposis syndrome. Br J Surg 102(1):114–118

    Article  CAS  PubMed  Google Scholar 

  258. Shovlin CL, Guttmacher AE, Buscarini E, Faughnan ME, Hyland RH, Westermann CJ et al (2000) Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 91(1):66–67

    Article  CAS  PubMed  Google Scholar 

  259. Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM et al (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28(2):184–187

    Article  CAS  PubMed  Google Scholar 

  260. Delnatte C, Sanlaville D, Mougenot JF, Vermeesch JR, Houdayer C, Blois MC et al (2006) Contiguous gene deletion within chromosome arm 10q is associated with juvenile polyposis of infancy, reflecting cooperation between the BMPR1A and PTEN tumor-suppressor genes. Am J Hum Genet 78(6):1066–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Menko FH, Kneepkens CM, de Leeuw N, Peeters EA, Van Maldergem L, Kamsteeg EJ et al (2008) Variable phenotypes associated with 10q23 microdeletions involving the PTEN and BMPR1A genes. Clin Genet 74(2):145–154

    Article  CAS  PubMed  Google Scholar 

  262. Eng C, Ji H (1998) Molecular classification of the inherited hamartoma polyposis syndromes: clearing the muddied waters. Am J Hum Genet 62(5):1020–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Dunlop MG, British Society for G, Association of Coloproctology for Great B, Ireland (2002) Guidance on gastrointestinal surveillance for hereditary non-polyposis colorectal cancer, familial adenomatous polypolis, juvenile polyposis, and Peutz-Jeghers syndrome. Gut 51(Suppl 5):V21–7

    Google Scholar 

  264. Oncel M, Church JM, Remzi FH, Fazio VW (2005) Colonic surgery in patients with juvenile polyposis syndrome: a case series. Dis Colon Rectum 48(1):49–55 (discussion—6)

    Google Scholar 

  265. Giardiello FM, Welsh SB, Hamilton SR, Offerhaus GJ, Gittelsohn AM, Booker SV et al (1987) Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med 316(24):1511–1514

    Article  CAS  PubMed  Google Scholar 

  266. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R et al (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18(1):38–43

    Article  CAS  PubMed  Google Scholar 

  267. Beggs AD, Latchford AR, Vasen HF, Moslein G, Alonso A, Aretz S et al (2010) Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut 59(7):975–986

    Article  CAS  PubMed  Google Scholar 

  268. van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME (2010) High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol 105(6):1258–1264 (author reply 65)

    Google Scholar 

  269. Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV et al (2000) Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119(6):1447–1453

    Article  CAS  PubMed  Google Scholar 

  270. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ et al (2006) Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res Official J Am Assoc Cancer Res 12(10):3209–3215

    Article  CAS  Google Scholar 

  271. Bosman FT (1999) The hamartoma-adenoma-carcinoma sequence. J Pathol 188(1):1–2

    Article  CAS  PubMed  Google Scholar 

  272. Jansen M, de Leng WW, Baas AF, Myoshi H, Mathus-Vliegen L, Taketo MM et al (2006) Mucosal prolapse in the pathogenesis of Peutz-Jeghers polyposis. Gut 55(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hamilton SRAL (2000) Pathology and genetics of tumours of the digestive system. IARC Press, International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  274. Lim W, Hearle N, Shah B, Murday V, Hodgson SV, Lucassen A et al (2003) Further observations on LKB1/STK11 status and cancer risk in Peutz-Jeghers syndrome. Br J Cancer 89(2):308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Volikos E, Robinson J, Aittomaki K, Mecklin JP, Jarvinen H, Westerman AM et al (2006) LKB1 exonic and whole gene deletions are a common cause of Peutz-Jeghers syndrome. J Med Genet 43(5):e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Aretz S, Stienen D, Uhlhaas S, Loff S, Back W, Pagenstecher C et al (2005) High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat 26(6):513–519

    Article  CAS  PubMed  Google Scholar 

  277. Mehenni H, Resta N, Guanti G, Mota-Vieira L, Lerner A, Peyman M et al (2007) Molecular and clinical characteristics in 46 families affected with Peutz-Jeghers syndrome. Dig Dis Sci 52(8):1924–1933

    Article  CAS  PubMed  Google Scholar 

  278. Dancey J (2010) mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 7(4):209–219

    Article  CAS  PubMed  Google Scholar 

  279. Wei C, Amos CI, Zhang N, Wang X, Rashid A, Walker CL et al (2008) Suppression of Peutz-Jeghers polyposis by targeting mammalian target of rapamycin signaling. Clin Cancer Res Official J Am Assoc Cancer Res 14(4):1167–1171

    Article  CAS  Google Scholar 

  280. Rossi DJ, Ylikorkala A, Korsisaari N, Salovaara R, Luukko K, Launonen V et al (2002) Induction of cyclooxygenase-2 in a mouse model of Peutz-Jeghers polyposis. Proc Natl Acad Sci USA 99(19):12327–12332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Udd L, Katajisto P, Rossi DJ, Lepisto A, Lahesmaa AM, Ylikorkala A et al (2004) Suppression of Peutz-Jeghers polyposis by inhibition of cyclooxygenase-2. Gastroenterology 127(4):1030–1037

    Article  CAS  PubMed  Google Scholar 

  282. Latchford AR, Neale K, Phillips RK, Clark SK (2011) Peutz-Jeghers syndrome: intriguing suggestion of gastrointestinal cancer prevention from surveillance. Dis Colon Rectum 54(12):1547–1551

    Article  CAS  PubMed  Google Scholar 

  283. Network. NCC (2015) NCCN clinical practice guidelines in oncology: genetic/familial high-risk assessment: colorectal version I.2015

    Google Scholar 

  284. Evaluation of Genomic Applications in P, Prevention Working G (2009) Recommendations from the EGAPP working group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from lynch syndrome in relatives. Genet Med 11(1):35–41

    Google Scholar 

  285. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer J Int Du Cancer 136(5):E359–E386

    Article  CAS  Google Scholar 

  286. Howlader NNA, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ (1975–2012) Cronin KA SEER cancer statistics review, National Cancer Institute Bethesda, MD2014. Based on Nov 2014, SEER data submission, posted to the SEER web site, April 5. Available from: http://seer.cancer.gov/csr/1975_2012/

  287. Davis DM, Marcet JE, Frattini JC, Prather AD, Mateka JJ, Nfonsam VN (2011) Is it time to lower the recommended screening age for colorectal cancer? J Am Coll Surg 213(3):352–361

    Article  PubMed  Google Scholar 

  288. Tawadros PS, Paquette IM, Hanly AM, Mellgren AF, Rothenberger DA, Madoff RD (2015) Adenocarcinoma of the rectum in patients under age 40 is increasing: impact of signet-ring cell histology. Dis Colon Rectum 58(5):474–478

    Article  PubMed  Google Scholar 

  289. Pignone M, Rich M, Teutsch SM, Berg AO, Lohr KN (2002) Screening for colorectal cancer in adults at average risk: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 137(2):132–141

    Article  PubMed  Google Scholar 

  290. Hamilton W, Round A, Sharp D, Peters TJ (2005) Clinical features of colorectal cancer before diagnosis: a population-based case-control study. Br J Cancer 93(4):399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Majumdar SR, Fletcher RH, Evans AT (1999) How does colorectal cancer present? Symptoms, duration, and clues to location. Am J Gastroenterol 94(10):3039–3045

    Article  CAS  PubMed  Google Scholar 

  292. Johns LE, Houlston RS (2001) A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96(10):2992–3003

    Article  CAS  PubMed  Google Scholar 

  293. Bernstein CN, Blanchard JF, Kliewer E, Wajda A (2001) Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 91(4):854–862

    Article  CAS  PubMed  Google Scholar 

  294. Amersi F, Agustin M, Ko CY (2005) Colorectal cancer: epidemiology, risk factors, and health services. Clin Colon Rectal Surg 18(3):133–140

    Article  PubMed  PubMed Central  Google Scholar 

  295. Jackson-Thompson J, Ahmed F, German RR, Lai SM, Friedman C (2006) Descriptive epidemiology of colorectal cancer in the United States, 1998–2001. Cancer 107(5 Suppl):1103–1111

    Article  PubMed  Google Scholar 

  296. Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B et al (2013) Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 24(6):1207–1222

    Article  PubMed  PubMed Central  Google Scholar 

  297. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E et al (2011) Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE 6(6):e20456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Cheng J, Chen Y, Wang X, Wang J, Yan Z, Gong G et al (2015) Meta-analysis of prospective cohort studies of cigarette smoking and the incidence of colon and rectal cancers. Eur J Cancer Prev 24(1):6–15

    Article  PubMed  Google Scholar 

  299. De Bruijn KM, Arends LR, Hansen BE, Leeflang S, Ruiter R, van Eijck CH (2013) Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer. Br J Surg 100(11):1421–1429

    Article  PubMed  Google Scholar 

  300. Rustgi AK (2007) The genetics of hereditary colon cancer. Genes Dev 21(20):2525–2538

    Article  CAS  PubMed  Google Scholar 

  301. Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Simons CC, Hughes LA, Smits KM, Khalid-de Bakker CA, de Bruine AP, Carvalho B et al (2013) A novel classification of colorectal tumors based on microsatellite instability, the CpG island methylator phenotype and chromosomal instability: implications for prognosis. Ann Oncol Official J Eur Soc Med Oncol ESMO 24(8):2048–2056

    Article  CAS  Google Scholar 

  303. Miyazaki M, Furuya T, Shiraki A, Sato T, Oga A, Sasaki K (1999) The relationship of DNA ploidy to chromosomal instability in primary human colorectal cancers. Cancer Res 59(20):5283–5285

    CAS  PubMed  Google Scholar 

  304. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396(6712):643–649

    Article  CAS  PubMed  Google Scholar 

  305. Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386(6625):623–627

    Article  CAS  PubMed  Google Scholar 

  306. Mouradov D, Domingo E, Gibbs P, Jorissen RN, Li S, Soo PY et al (2013) Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am J Gastroenterol 108(11):1785–1793

    Article  CAS  PubMed  Google Scholar 

  307. Jallepalli PV, Lengauer C (2001) Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 1(2):109–117

    Article  CAS  PubMed  Google Scholar 

  308. Thiagalingam S, Laken S, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B et al (2001) Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc Natl Acad Sci USA 98(5):2698–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Walther A, Houlston R, Tomlinson I (2008) Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 57(7):941–950

    Article  CAS  PubMed  Google Scholar 

  310. Geigl JB, Obenauf AC, Schwarzbraun T, Speicher MR (2008) Defining ‘chromosomal instability’. Trends Genet 24(2):64–69

    Article  CAS  PubMed  Google Scholar 

  311. Baba Y, Nosho K, Shima K, Irahara N, Kure S, Toyoda S et al (2009) Aurora-A expression is independently associated with chromosomal instability in colorectal cancer. Neoplasia. 11(5):418–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Sawada T, Yamamoto E, Suzuki H, Nojima M, Maruyama R, Shioi Y et al (2013) Association between genomic alterations and metastatic behavior of colorectal cancer identified by array-based comparative genomic hybridization. Genes Chromosom Cancer 52(2):140–149

    Article  CAS  PubMed  Google Scholar 

  313. Jones AM, Douglas EJ, Halford SE, Fiegler H, Gorman PA, Roylance RR et al (2005) Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma. Oncogene 24(1):118–129

    Article  CAS  PubMed  Google Scholar 

  314. Rowan A, Halford S, Gaasenbeek M, Kemp Z, Sieber O, Volikos E et al (2005) Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin Gastroenterol Hepatol 3(11):1115–1123

    Article  CAS  PubMed  Google Scholar 

  315. Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K et al (2012) Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J Clin Oncol Official J Am Soc Clin Oncol 30(18):2256–2264

    Article  Google Scholar 

  316. Pazdur R, Lassere Y, Soh LT, Ajani JA, Bready B, Soo E et al (1994) Phase II trial of docetaxel (Taxotere) in metastatic colorectal carcinoma. Ann Oncol Official J Euro Soc Med Oncol ESMO 5(5):468–470

    CAS  Google Scholar 

  317. Clark TB, Kemeny NE, Conti JA, Huang Y, Andre AM, Stockman J (1998) Phase II trial of docetaxel (Taxotere) for untreated advanced colorectal carcinoma. Cancer Invest 16(5):314–318

    Article  CAS  PubMed  Google Scholar 

  318. Swanton C, Marani M, Pardo O, Warne PH, Kelly G, Sahai E et al (2007) Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11(6):498–512

    Article  CAS  PubMed  Google Scholar 

  319. Swanton C, Nicke B, Schuett M, Eklund AC, Ng C, Li Q et al (2009) Chromosomal instability determines taxane response. Proc Natl Acad Sci USA 106(21):8671–8676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Swanton C, Tomlinson I, Downward J (2006) Chromosomal instability, colorectal cancer and taxane resistance. Cell Cycle 5(8):818–823

    Article  CAS  PubMed  Google Scholar 

  321. Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3(1):51–62

    Article  CAS  PubMed  Google Scholar 

  322. Moorcraft SY, Chau I, Peckitt C, Cunningham D, Rao S, Yim KL et al (2013) Patupilone in patients with pretreated metastatic/locally recurrent colorectal cancer: results of the Phase II CINATRA trial. Invest New Drugs 31(5):1339–1344

    Article  CAS  PubMed  Google Scholar 

  323. Lee AJ, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA et al (2011) Chromosomal instability confers intrinsic multidrug resistance. Cancer Res 71(5):1858–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol Official J Am Soc Clin Oncol 24(33):5313–5327

    Article  CAS  Google Scholar 

  325. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D (2009) Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9(7):489–499

    Article  CAS  PubMed  Google Scholar 

  326. Ogino S, Cantor M, Kawasaki T, Brahmandam M, Kirkner GJ, Weisenberger DJ et al (2006) CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut 55(7):1000–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, Murtaugh MA et al (2005) Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129(3):837–845

    Article  CAS  PubMed  Google Scholar 

  328. Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993

    Article  CAS  PubMed  Google Scholar 

  329. Park SJ, Rashid A, Lee JH, Kim SG, Hamilton SR, Wu TT (2003) Frequent CpG island methylation in serrated adenomas of the colorectum. Am J Pathol 162(3):815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Ogino S, Kawasaki T, Kirkner GJ, Kraft P, Loda M, Fuchs CS (2007) Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn. 9(3):305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Ogino S, Odze RD, Kawasaki T, Brahmandam M, Kirkner GJ, Laird PW et al (2006) Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma. Am J Surg Pathol 30(9):1175–1183

    Article  PubMed  Google Scholar 

  332. Samowitz WS, Albertsen H, Sweeney C, Herrick J, Caan BJ, Anderson KE et al (2006) Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J Natl Cancer Inst 98(23):1731–1738

    Article  CAS  PubMed  Google Scholar 

  333. Limsui D, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW et al (2010) Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst 102(14):1012–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. van Rijnsoever M, Grieu F, Elsaleh H, Joseph D, Iacopetta B (2002) Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut 51(6):797–802

    Article  PubMed  PubMed Central  Google Scholar 

  335. Goel A, Nagasaka T, Arnold CN, Inoue T, Hamilton C, Niedzwiecki D et al (2007) The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology 132(1):127–138

    Article  CAS  PubMed  Google Scholar 

  336. Barault L, Charon-Barra C, Jooste V, de la Vega MF, Martin L, Roignot P et al (2008) Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res 68(20):8541–8546

    Article  CAS  PubMed  Google Scholar 

  337. Toyota M, Ohe-Toyota M, Ahuja N, Issa JP (2000) Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci USA 97(2):710–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Esteller M, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Watkins DN et al (2000) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 60(9):2368–2371

    CAS  PubMed  Google Scholar 

  339. Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS (2006) CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn. 8(5):582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y et al (2007) Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA 104(47):18654–18659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD et al (2004) BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53(8):1137–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Chan TL, Zhao W, Leung SY, Yuen ST (2003) Cancer Genome P. BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63(16):4878–4881

    CAS  PubMed  Google Scholar 

  343. Yang S, Farraye FA, Mack C, Posnik O, O’Brien MJ (2004) BRAF and KRAS Mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status. Am J Surg Pathol 28(11):1452–1459

    Article  PubMed  Google Scholar 

  344. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724

    Article  CAS  PubMed  Google Scholar 

  345. Beach R, Chan AO, Wu TT, White JA, Morris JS, Lunagomez S et al (2005) BRAF mutations in aberrant crypt foci and hyperplastic polyposis. Am J Pathol 166(4):1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  347. Bennecke M, Kriegl L, Bajbouj M, Retzlaff K, Robine S, Jung A et al (2010) Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell 18(2):135–146

    Article  CAS  PubMed  Google Scholar 

  348. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132(3):363–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Carragher LA, Snell KR, Giblett SM, Aldridge VS, Patel B, Cook SJ et al (2010) V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol Med 2(11):458–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Suzuki H, Igarashi S, Nojima M, Maruyama R, Yamamoto E, Kai M et al (2010) IGFBP7 is a p53-responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype. Carcinogenesis 31(3):342–349

    Article  CAS  PubMed  Google Scholar 

  351. Leggett B, Whitehall V (2010) Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology 138(6):2088–2100

    Article  CAS  PubMed  Google Scholar 

  352. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349(3):247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol Official J Am Soc Clin Oncol 28(20):3219–3226

    Article  CAS  Google Scholar 

  354. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW et al (1998) A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257

    CAS  PubMed  Google Scholar 

  355. Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol Official J Am Soc Clin Oncol 23(3):609–618

    Article  CAS  Google Scholar 

  356. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H et al (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57(5):808–811

    CAS  PubMed  Google Scholar 

  357. Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW et al (1995) Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 55(23):5548–5550

    CAS  PubMed  Google Scholar 

  358. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338

    Article  CAS  PubMed  Google Scholar 

  359. Souza RF, Appel R, Yin J, Wang S, Smolinski KN, Abraham JM et al (1996) Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet 14(3):255–257

    Article  CAS  PubMed  Google Scholar 

  360. Mori Y, Yin J, Rashid A, Leggett BA, Young J, Simms L et al (2001) Instabilotyping: comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Res 61(16):6046–6049

    CAS  PubMed  Google Scholar 

  361. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302):967–969

    Article  CAS  PubMed  Google Scholar 

  362. Jung B, Smith EJ, Doctolero RT, Gervaz P, Alonso JC, Miyai K et al (2006) Influence of target gene mutations on survival, stage and histology in sporadic microsatellite unstable colon cancers. Int J Cancer J Int Du Cancer 118(10):2509–2513

    Article  CAS  Google Scholar 

  363. Jass JR, Biden KG, Cummings MC, Simms LA, Walsh M, Schoch E et al (1999) Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways. J Clin Pathol 52(6):455–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Lothe RA, Peltomaki P, Meling GI, Aaltonen LA, Nystrom-Lahti M, Pylkkanen L et al (1993) Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res 53(24):5849–5852

    CAS  PubMed  Google Scholar 

  365. Olschwang S, Hamelin R, Laurent-Puig P, Thuille B, De Rycke Y, Li YJ et al (1997) Alternative genetic pathways in colorectal carcinogenesis. Proc Natl Acad Sci USA 94(22):12122–12127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Salahshor S, Kressner U, Pahlman L, Glimelius B, Lindmark G, Lindblom A (1999) Colorectal cancer with and without microsatellite instability involves different genes. Genes Chromosom Cancer 26(3):247–252

    Article  CAS  PubMed  Google Scholar 

  367. Sinicrope FA, Rego RL, Foster N, Sargent DJ, Windschitl HE, Burgart LJ et al (2006) Microsatellite instability accounts for tumor site-related differences in clinicopathologic variables and prognosis in human colon cancers. Am J Gastroenterol 101(12):2818–2825

    Article  CAS  PubMed  Google Scholar 

  368. Raut CP, Pawlik TM, Rodriguez-Bigas MA (2004) Clinicopathologic features in colorectal cancer patients with microsatellite instability. Mutat Res 568(2):275–282

    Article  CAS  PubMed  Google Scholar 

  369. Bartley AN, Luthra R, Saraiya DS, Urbauer DL, Broaddus RR (2012) Identification of cancer patients with Lynch syndrome: clinically significant discordances and problems in tissue-based mismatch repair testing. Cancer Prev Res (Phila). 5(2):320–327

    Article  PubMed  Google Scholar 

  370. Affolter K, Samowitz W, Tripp S, Bronner MP (2013) BRAF V600E mutation detection by immunohistochemistry in colorectal carcinoma. Genes Chromosom Cancer 52(8):748–752

    Article  CAS  PubMed  Google Scholar 

  371. Xicola RM, Llor X, Pons E, Castells A, Alenda C, Pinol V et al (2007) Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst 99(3):244–252

    Article  CAS  PubMed  Google Scholar 

  372. Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K et al (2002) Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 123(6):1804–1811

    Article  CAS  PubMed  Google Scholar 

  373. Bacher JW, Flanagan LA, Smalley RL, Nassif NA, Burgart LJ, Halberg RB et al (2004) Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis Markers 20(4–5):237–250

    Article  PubMed  PubMed Central  Google Scholar 

  374. Jass JR, Do KA, Simms LA, Iino H, Wynter C, Pillay SP et al (1998) Morphology of sporadic colorectal cancer with DNA replication errors. Gut 42(5):673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Kim H, Jen J, Vogelstein B, Hamilton SR (1994) Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 145(1):148–156

    CAS  PubMed  PubMed Central  Google Scholar 

  376. Hutchins G, Southward K, Handley K, Magill L, Beaumont C, Stahlschmidt J et al (2011) Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol Official J Am Soc Clin Oncol 29(10):1261–1270

    Article  Google Scholar 

  377. Poynter JN, Siegmund KD, Weisenberger DJ, Long TI, Thibodeau SN, Lindor N et al (2008) Molecular characterization of MSI-H colorectal cancer by MLHI promoter methylation, immunohistochemistry, and mismatch repair germline mutation screening. Cancer Epidemiol Biomarkers Prev 17(11):3208–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Phillips SM, Banerjea A, Feakins R, Li SR, Bustin SA, Dorudi S (2004) Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br J Surg 91(4):469–475

    Article  CAS  PubMed  Google Scholar 

  379. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260(5109):816–819

    Article  CAS  PubMed  Google Scholar 

  380. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561

    Article  CAS  PubMed  Google Scholar 

  381. Bertagnolli MM, Redston M, Compton CC, Niedzwiecki D, Mayer RJ, Goldberg RM et al (2011) Microsatellite instability and loss of heterozygosity at chromosomal location 18q: prospective evaluation of biomarkers for stages II and III colon cancer–a study of CALGB 9581 and 89803. J Clin Oncol Official J Am Soc Clin Oncol 29(23):3153–3162

    Article  Google Scholar 

  382. Parker WB, Cheng YC (1990) Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther 48(3):381–395

    Article  CAS  PubMed  Google Scholar 

  383. Carethers JM, Chauhan DP, Fink D, Nebel S, Bresalier RS, Howell SB et al (1999) Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117(1):123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Arnold CN, Goel A, Boland CR (2003) Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer J Int Du Cancer 106(1):66–73

    Article  CAS  Google Scholar 

  385. Tajima A, Hess MT, Cabrera BL, Kolodner RD, Carethers JM (2004) The mismatch repair complex hMutS alpha recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. Gastroenterology 127(6):1678–1684

    Article  CAS  PubMed  Google Scholar 

  386. Tajima A, Iwaizumi M, Tseng-Rogenski S, Cabrera BL, Carethers JM (2011) Both hMutSalpha and hMutSss DNA mismatch repair complexes participate in 5-fluorouracil cytotoxicity. PLoS ONE 6(12):e28117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Elsaleh H, Joseph D, Grieu F, Zeps N, Spry N, Iacopetta B (2000) Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 355(9217):1745–1750

    Article  CAS  PubMed  Google Scholar 

  388. Hemminki A, Mecklin JP, Jarvinen H, Aaltonen LA, Joensuu H (2000) Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 119(4):921–928

    Article  CAS  PubMed  Google Scholar 

  389. Kim GP, Colangelo LH, Wieand HS, Paik S, Kirsch IR, Wolmark N et al (2007) Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol Official J Am Soc Clin Oncol 25(7):767–772

    Article  CAS  Google Scholar 

  390. Sargent D, Sobrero A, Grothey A, O’Connell MJ, Buyse M, Andre T et al (2009) Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol Official J Am Soc Clin Oncol 27(6):872–877

    Article  Google Scholar 

  391. Alter E, Phelip JM, Guilhot JN, Matysiak M, Vermorel M, Roblin X (2007) Adjuvant chemotherapy for stage II colon cancer: influence of care structures’ characteristics on a controversial clinical practice. Eur J Gastroenterol Hepatol 19(11):995–1001

    Article  PubMed  Google Scholar 

  392. Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans K et al (2012) ESMO consensus guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol Official J Euro Soc Med Oncol ESMO 23(10):2479–2516

    Google Scholar 

  393. Network. NCC (2015) NCCN clinical practice guidelines in oncology: colon cancer version 3.2015

    Google Scholar 

  394. Deng G, Bell I, Crawley S, Gum J, Terdiman JP, Allen BA et al (2004) BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res Official J Am Assoc Cancer Res 10(1 Pt 1):191–195

    Article  CAS  Google Scholar 

  395. Thiel A, Heinonen M, Kantonen J, Gylling A, Lahtinen L, Korhonen M et al (2013) BRAF mutation in sporadic colorectal cancer and lynch syndrome. Virchows Arch 463(5):613–621

    Article  CAS  PubMed  Google Scholar 

  396. Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA et al (2005) Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 65(14):6063–6069

    Article  CAS  PubMed  Google Scholar 

  397. Oliveira C, Pinto M, Duval A, Brennetot C, Domingo E, Espin E et al (2003) BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene 22(57):9192–9196

    Article  CAS  PubMed  Google Scholar 

  398. Domingo E, Niessen RC, Oliveira C, Alhopuro P, Moutinho C, Espin E et al (2005) BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene 24(24):3995–3998

    Article  CAS  PubMed  Google Scholar 

  399. Ogino S, Shima K, Meyerhardt JA, McCleary NJ, Ng K, Hollis D et al (2012) Predictive and prognostic roles of BRAF mutation in stage III colon cancer: results from intergroup trial CALGB 89803. Clin Cancer Res Official J Am Assoc Cancer Res 18(3):890–900

    Article  CAS  Google Scholar 

  400. Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D et al (2010) Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol Official J Am Soc Clin Oncol 28(3):466–474

    Article  CAS  Google Scholar 

  401. Farina-Sarasqueta A, van Lijnschoten G, Moerland E, Creemers GJ, Lemmens VE, Rutten HJ et al (2010) The BRAF V600E mutation is an independent prognostic factor for survival in stage II and stage III colon cancer patients. Ann Oncol Official J Euro Soc Med Oncol ESMO 21(12):2396–2402

    Article  CAS  Google Scholar 

  402. Lin CC, Lin JK, Lin TC, Chen WS, Yang SH, Wang HS et al (2014) The prognostic role of microsatellite instability, codon-specific KRAS, and BRAF mutations in colon cancer. J Surg Oncol 110(4):451–457

    Article  CAS  PubMed  Google Scholar 

  403. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  404. Porebska I, Harlozinska A, Bojarowski T (2000) Expression of the tyrosine kinase activity growth factor receptors (EGFR, ERB B2, ERB B3) in colorectal adenocarcinomas and adenomas. Tumour Biol J Int Soc Oncodevelopmental Biol Med 21(2):105–115

    Article  CAS  Google Scholar 

  405. Spano JP, Lagorce C, Atlan D, Milano G, Domont J, Benamouzig R et al (2005) Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol Official J Euro Soc Med Oncol ESMO 16(1):102–108

    Article  Google Scholar 

  406. Rego RL, Foster NR, Smyrk TC, Le M, O’Connell MJ, Sargent DJ et al (2010) Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. Br J Cancer 102(1):165–172

    Article  CAS  PubMed  Google Scholar 

  407. Mayer A, Takimoto M, Fritz E, Schellander G, Kofler K, Ludwig H (1993) The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer 71(8):2454–2460

    Article  CAS  PubMed  Google Scholar 

  408. Marshall J (2006) Clinical implications of the mechanism of epidermal growth factor receptor inhibitors. Cancer 107(6):1207–1218

    Article  CAS  PubMed  Google Scholar 

  409. Overman MJ, Hoff PM (2007) EGFR-targeted therapies in colorectal cancer. Dis Colon Rectum 50(8):1259–1270

    Article  PubMed  Google Scholar 

  410. El Zouhairi M, Charabaty A, Pishvaian MJ (2011) Molecularly targeted therapy for metastatic colon cancer: proven treatments and promising new agents. Gastrointest Cancer Res 4(1):15–21

    PubMed  PubMed Central  Google Scholar 

  411. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345

    Article  CAS  PubMed  Google Scholar 

  412. Jonker DJ, O’Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ et al (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357(20):2040–2048

    Article  CAS  PubMed  Google Scholar 

  413. Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol Official J Am Soc Clin Oncol 29(15):2011–2019

    Article  CAS  Google Scholar 

  414. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765

    Article  CAS  PubMed  Google Scholar 

  415. Bokemeyer C, Bondarenko I, Hartmann JT, de Braud F, Schuch G, Zubel A et al (2011) Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol Official J Euro Soc Med Oncol ESMO 22(7):1535–1546

    Article  CAS  Google Scholar 

  416. Saltz L, Easley C, Kirkpatrick P (2006) Panitumumab. Nat Rev Drug Discov 5(12):987–988

    Article  CAS  PubMed  Google Scholar 

  417. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol Official J Am Soc Clin Oncol 25(13):1658–1664

    Article  CAS  Google Scholar 

  418. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol Official J Am Soc Clin Oncol 26(10):1626–1634

    Article  CAS  Google Scholar 

  419. Seymour MT, Brown SR, Middleton G, Maughan T, Richman S, Gwyther S et al (2013) Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol 14(8):749–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M et al (2010) Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol Official J Am Soc Clin Oncol 28(31):4697–4705

    Article  CAS  Google Scholar 

  421. Hecht JR, Mitchell E, Neubauer MA, Burris HA 3rd, Swanson P, Lopez T et al (2010) Lack of correlation between epidermal growth factor receptor status and response to Panitumumab monotherapy in metastatic colorectal cancer. Clin Cancer Res Official J Am Assoc Cancer Res 16(7):2205–2213

    Article  CAS  Google Scholar 

  422. Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A et al (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol Official J Am Soc Clin Oncol 23(9):1803–1810

    Article  CAS  Google Scholar 

  423. Messersmith WA, Ahnen DJ (2008) Targeting EGFR in colorectal cancer. N Engl J Med 359(17):1834–1836

    Article  CAS  PubMed  Google Scholar 

  424. Petrelli F, Borgonovo K, Barni S (2013) The predictive role of skin rash with cetuximab and panitumumab in colorectal cancer patients: a systematic review and meta-analysis of published trials. Target Oncol 8(3):173–181

    Article  CAS  PubMed  Google Scholar 

  425. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360(14):1408–1417

    Article  PubMed  Google Scholar 

  426. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F et al (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol Official J Am Soc Clin Oncol 27(5):663–671

    Article  CAS  Google Scholar 

  427. Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH et al (2011) Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 377(9783):2103–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995

    Article  CAS  PubMed  Google Scholar 

  429. Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJ, Schrama JG et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360(6):563–572

    Article  CAS  PubMed  Google Scholar 

  430. Tveit KM, Guren T, Glimelius B, Pfeiffer P, Sorbye H, Pyrhonen S et al (2012) Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol Official J Am Soc Clin Oncol 30(15):1755–1762

    Article  CAS  Google Scholar 

  431. Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y et al (2010) Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol Official J Am Soc Clin Oncol 28(31):4706–4713

    Article  CAS  Google Scholar 

  432. Hecht JR, Mitchell E, Chidiac T, Scroggin C, Hagenstad C, Spigel D et al (2009) A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol Official J Am Soc Clin Oncol 27(5):672–680

    Article  CAS  Google Scholar 

  433. Atreya CE, Corcoran RB, Kopetz S (2015) Expanded RAS: refining the patient population. J Clin Oncol Official J Am Soc Clin Oncol 33(7):682–685

    Article  Google Scholar 

  434. Sorich MJ, Wiese MD, Rowland A, Kichenadasse G, McKinnon RA, Karapetis CS (2015) Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol Official J Euro Soc Med Oncol ESMO 26(1):13–21

    Article  CAS  Google Scholar 

  435. Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034

    Article  CAS  PubMed  Google Scholar 

  436. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S et al (2010) Association of KRAS p. G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304(16):1812–1820

    Article  PubMed  Google Scholar 

  437. List of cleared or approved companion diagnostic devices (in vitro and imaging tools) (2015). Available from: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htm

  438. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867

    Article  CAS  PubMed  Google Scholar 

  439. Tol J, Nagtegaal ID, Punt CJ (2009) BRAF mutation in metastatic colorectal cancer. N Engl J Med 361(1):98–99

    Article  CAS  PubMed  Google Scholar 

  440. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762

    Article  PubMed  CAS  Google Scholar 

  441. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol Official J Am Soc Clin Oncol 26(35):5705–5712

    Article  CAS  Google Scholar 

  442. Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M et al (2012) Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 48(10):1466–1475

    Article  CAS  PubMed  Google Scholar 

  443. Peeters M, Oliner KS, Parker A, Siena S, Van Cutsem E, Huang J et al (2013) Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase III study of metastatic colorectal cancer. Clin Cancer Research Official J Am Assoc Cancer Res 19(7):1902–1912

    Article  CAS  Google Scholar 

  444. Phipps AI, Buchanan DD, Makar KW, Burnett-Hartman AN, Coghill AE, Passarelli MN et al (2012) BRAF mutation status and survival after colorectal cancer diagnosis according to patient and tumor characteristics. Cancer Epidemiol Biomarkers Prev 21(10):1792–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Karapetis CS, Jonker D, Daneshmand M, Hanson JE, O’Callaghan CJ, Marginean C et al (2014) PIK3CA, BRAF, and PTEN status and benefit from cetuximab in the treatment of advanced colorectal cancer–results from NCIC CTG/AGITG CO.17. Clinical cancer research: an official journal of the American Association for. Cancer Res 20(3):744–753

    CAS  Google Scholar 

  446. Evaluation of Genomic Applications in P, Prevention Working G (2013) Recommendations from the EGAPP Working Group: can testing of tumor tissue for mutations in EGFR pathway downstream effector genes in patients with metastatic colorectal cancer improve health outcomes by guiding decisions regarding anti-EGFR therapy? Genet Med 15(7):517–527

    Google Scholar 

  447. Santini D, Spoto C, Loupakis F, Vincenzi B, Silvestris N, Cremolini C et al (2010) High concordance of BRAF status between primary colorectal tumours and related metastatic sites: implications for clinical practice. Ann Oncol Official J Euro Soc Med Oncol ESMO 21(7):1565

    Article  CAS  Google Scholar 

  448. Italiano A, Hostein I, Soubeyran I, Fabas T, Benchimol D, Evrard S et al (2010) KRAS and BRAF mutational status in primary colorectal tumors and related metastatic sites: biological and clinical implications. Ann Surg Oncol 17(5):1429–1434

    Article  PubMed  Google Scholar 

  449. Jhawer M, Goel S, Wilson AJ, Montagna C, Ling YH, Byun DS et al (2008) PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68(6):1953–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S et al (2009) PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 69(5):1851–1857

    Article  CAS  PubMed  Google Scholar 

  451. Pentheroudakis G, Kotoula V, De Roock W, Kouvatseas G, Papakostas P, Makatsoris T et al (2013) Biomarkers of benefit from cetuximab-based therapy in metastatic colorectal cancer: interaction of EGFR ligand expression with RAS/RAF, PIK3CA genotypes. BMC Cancer 13:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Laurent-Puig P, Cayre A, Manceau G, Buc E, Bachet JB, Lecomte T et al (2009) Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol Official J Am Soc Clin Oncol 27(35):5924–5930

    Article  CAS  Google Scholar 

  453. Lin JS, Webber EM, Senger CA, Holmes RS, Whitlock EP (2011) Systematic review of pharmacogenetic testing for predicting clinical benefit to anti-EGFR therapy in metastatic colorectal cancer. Am J Cancer Res 1(5):650–662

    PubMed  PubMed Central  Google Scholar 

  454. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10

    Article  CAS  PubMed  Google Scholar 

  455. Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437(7058):497–504

    Article  CAS  PubMed  Google Scholar 

  456. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64(11):3731–3736

    Article  CAS  PubMed  Google Scholar 

  457. Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Senger DR et al (1993) Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res 53(19):4727–4735

    CAS  PubMed  Google Scholar 

  458. Ellis LM (2006) Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Semin Oncol 33(5 Suppl 10):S1–S7

    Article  CAS  PubMed  Google Scholar 

  459. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    Article  CAS  PubMed  Google Scholar 

  460. Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR et al (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol Official J Am Soc Clin Oncol 25(12):1539–1544

    Article  CAS  Google Scholar 

  461. Bennouna J, Sastre J, Arnold D, Osterlund P, Greil R, Van Cutsem E et al (2013) Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol 14(1):29–37

    Article  CAS  PubMed  Google Scholar 

  462. Allegra CJ, Yothers G, O’Connell MJ, Sharif S, Petrelli NJ, Colangelo LH et al (2011) Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol Official J Am Soc Clin Oncol 29(1):11–16

    Article  CAS  Google Scholar 

  463. Allegra CJ, Yothers G, O’Connell MJ, Sharif S, Petrelli NJ, Lopa SH et al (2013) Bevacizumab in stage II-III colon cancer: 5-year update of the National Surgical Adjuvant Breast and Bowel Project C-08 trial. J Clin Oncol Official J Am Soc Clin Oncol 31(3):359–364

    Article  CAS  Google Scholar 

  464. de Gramont A, Van Cutsem E, Schmoll HJ, Tabernero J, Clarke S, Moore MJ et al (2012) Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 13(12):1225–1233

    Article  PubMed  CAS  Google Scholar 

  465. Goede V, Coutelle O, Neuneier J, Reinacher-Schick A, Schnell R, Koslowsky TC et al (2010) Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br J Cancer 103(9):1407–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  466. Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV et al (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol Official J Am Soc Clin Oncol 27(18):3020–3026

    Article  CAS  Google Scholar 

  467. Koutras AK, Antonacopoulou AG, Eleftheraki AG, Dimitrakopoulos FI, Koumarianou A, Varthalitis I et al (2012) Vascular endothelial growth factor polymorphisms and clinical outcome in colorectal cancer patients treated with irinotecan-based chemotherapy and bevacizumab. Pharmacogenomics J 12(6):468–475

    Article  CAS  PubMed  Google Scholar 

  468. Loupakis F, Ruzzo A, Salvatore L, Cremolini C, Masi G, Frumento P et al (2011) Retrospective exploratory analysis of VEGF polymorphisms in the prediction of benefit from first-line FOLFIRI plus bevacizumab in metastatic colorectal cancer. BMC Cancer 11:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  469. Gerger A, El-Khoueiry A, Zhang W, Yang D, Singh H, Bohanes P et al (2011) Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res Official J Am Assoc Cancer Res 17(17):5783–5792

    Article  CAS  Google Scholar 

  470. Hansen TF, Christensen R, Andersen RF (2012) Garm Spindler KL, Johnsson A, Jakobsen A. The predictive value of single nucleotide polymorphisms in the VEGF system to the efficacy of first-line treatment with bevacizumab plus chemotherapy in patients with metastatic colorectal cancer: results from the Nordic ACT trial. Int J Colorectal Dis 27(6):715–720

    Article  PubMed  Google Scholar 

  471. Ranpura V, Hapani S, Wu S (2011) Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 305(5):487–494

    Article  CAS  PubMed  Google Scholar 

  472. Dai F, Shu L, Bian Y, Wang Z, Yang Z, Chu W et al (2013) Safety of bevacizumab in treating metastatic colorectal cancer: a systematic review and meta-analysis of all randomized clinical trials. Clin Drug Investig 33(11):779–788

    Article  CAS  PubMed  Google Scholar 

  473. Manes G, de Bellis M, Fuccio L, Repici A, Masci E, Ardizzone S et al (2011) Endoscopic palliation in patients with incurable malignant colorectal obstruction by means of self-expanding metal stent: analysis of results and predictors of outcomes in a large multicenter series. Arch Surg 146(10):1157–1162

    Article  PubMed  Google Scholar 

  474. van Halsema EE, van Hooft JE, Small AJ, Baron TH, Garcia-Cano J, Cheon JH et al (2014) Perforation in colorectal stenting: a meta-analysis and a search for risk factors. Gastrointest Endosc 79(6):970–82 e7 (quiz 83 e2, 83 e5)

    Google Scholar 

  475. Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F et al (2007) Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst 99(16):1232–1239

    Article  PubMed  Google Scholar 

  476. Prescribing information for Avastin (bevacizumab) (2015) Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125085s305lbl.pdf

  477. Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T et al (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol Official J Am Soc Clin Oncol 30(28):3499–3506

    Article  CAS  Google Scholar 

  478. Ruff P, Ferry DR, Lakomy R, Prausova J, Van Hazel GA, Hoff PM et al (2015) Time course of safety and efficacy of aflibercept in combination with FOLFIRI in patients with metastatic colorectal cancer who progressed on previous oxaliplatin-based therapy. Eur J Cancer 51(1):18–26

    Article  CAS  PubMed  Google Scholar 

  479. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE et al (2014) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1065–1075

    Article  CAS  PubMed  Google Scholar 

  480. Venook AP ND, Lenz H, Innocenti F, Mahoney MR, O’Neil BH, Shaw JE, Polite BN, Hochster HS, Atkins JN, Goldberg RM, Mayer RJ, Schilsky RL, Bertagnolli MM, Blanke CD (2014) CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (mCRC). J Clin Oncol 32(15):LBA3

    Google Scholar 

  481. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303–312

    Article  CAS  PubMed  Google Scholar 

  482. Juo YY, Johnston FM, Zhang DY, Juo HH, Wang H, Pappou EP et al (2014) Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis. Ann Oncol Official J Euro Soc Med Oncol ESMO 25(12):2314–2327

    Article  CAS  Google Scholar 

  483. Andreyev HJ, Norman AR, Cunningham D, Oates J, Dix BR, Iacopetta BJ et al (2001) Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer 85(5):692–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  484. Prescribing information for Erbitux (cetuximab) (2015) Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125084s225lbl.pdf

  485. Prescribing instructions for Zaltrap (ziv-aflibercept) (2015) Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125418s000lbl.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen Jen Yeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lopez, N.E., Yeh, J.J. (2016). Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. In: Bentrem, D., Benson, A. (eds) Gastrointestinal Malignancies. Cancer Treatment and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-34244-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34244-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34242-9

  • Online ISBN: 978-3-319-34244-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics