Skip to main content

Application of Somatic Embryogenesis to Secondary Metabolite-Producing Plants

  • Chapter
  • First Online:
Somatic Embryogenesis: Fundamental Aspects and Applications

Abstract

Plants display an amazing biosynthetic capacity. To date, around 200,000 different chemical compounds have been isolated from them. Only a relatively few of these compounds are common to all plant species, since they are involved in basic or primary cell processes, such as energy metabolism. However, the broader plant chemical diversity corresponds to those compounds showing a restricted distribution among only a few taxonomically related species and which are not involved in primary metabolic pathways. These compounds are called secondary or specialized metabolites and they have important roles in numerous plant-environment interactions. Aside from these functions, secondary metabolites, and the plants bearing them, represent highly regarded commercial products given their pharmaceutical, flavoring, aromatic, coloring, and poisonous properties. In here, we present some selected examples of secondary metabolite-producing plants for which efficient protocols of somatic embryogenesis have been developed. The review covers mainly plants producing fine chemicals, used either in pharmaceutical or food industries. As shown, the development of somatic embryogenesis procedures could respond to two main goals: the genetic transformation of a given plant species, or the massive propagation of selected materials. Furthermore, the use of such protocols for the generation of diversity through indirect embryo formation is also presented.

FAVF is recipient of a CONACYT grant (National Council for Science and Technology, México) (CB-2012-0181880).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-diclorophenoxyacetic acid

ABA:

Abscisic acid

BA:

6-benzyladenine

GA:

Gibberellic acid

Kin:

Kinetin

NAA:

Naphthalenacetic acid

TDZ:

Thidiazuron

References

  • Akhondzadeh S, Tahmacebi-Pour N, Noorbala AA et al (2005) Crocus sativus L. in the treatment of mild to moderate depression: a double-blind, randomized and placebo-controlled trial. Phytother Res 19:148–151. doi:10.1002/ptr.1647

    Article  PubMed  Google Scholar 

  • Anjaneyulu C, Shyamkumar B, Giri CC (2004) Somatic embryogenesis from callus cultures of Terminalia chebula Retz: an important medicinal tree. Trees 18:547–552. doi:10.1007/s00468-004-0344-9

    Article  Google Scholar 

  • Aslam J, Mujib A, Nasim SA, Sharma MP (2009) Screening of vincristine yield in ex vitro and in vitro somatic embryos derived plantlets of Catharanthus roseus L. (G) Don. Sci Hortic 119:325–329. doi:10.1016/j.scienta.2008.08.018

    Article  CAS  Google Scholar 

  • Aslam J, Mujib A, Sharma MP (2011) Influence of freezing and non-freezing temperature on somatic embryogenesis and vinblastine production in Catharanthus roseus (L.) G. Don. Acta Physiol Plant 33:473–480. doi:10.1007/s11738-010-0569-8

    Google Scholar 

  • Blazquez S, Olmos E, Hernández JA et al (2009) Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the antioxidant enzymatic system. Plant Cell Tiss Org 97:49–57. doi:10.1007/s11240-009-9497-y

    Article  CAS  Google Scholar 

  • Carmona M, Zalacain A, Sánchez AM et al (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem 54:973–979. doi:10.1021/jf052297w

    Article  CAS  PubMed  Google Scholar 

  • Caro Y, Anamale L, Fouillaud M et al (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprosp 2:174–193. doi:10.1007/s13659-012-0086-0

    Article  CAS  Google Scholar 

  • Chitty JA, Allen RS, Fist AJ, Larkin PJ (2003) Genetic transformation in commercial Tasmanian cultivars of opium poppy, Papaver somniferum, and movement of transgenic pollen in the field. Funct Plant Biol 30:1045–1058. doi:10.1071/FP03126

    Article  CAS  Google Scholar 

  • da Cruz ACF, Rocha DI, Iarema L, Ventrella MC et al (2014) In vitro organogenesis from root culture segments of Bixa orellana L. (Bixaceae). In Vitro Cell Dev Biol-Plant 50:76–83. doi:10.1007/s11627-013-9580-2

    Article  CAS  Google Scholar 

  • Dhandapani M, Kim DH, Hong S-B (2008) Efficient plant regeneration via somatic embryogenesis and organogenesis from the explants of Catharanthus roseus. In Vitro Cell Dev-Pl 44:18–25. doi:10.1007/s11627-007-9094-x

    Article  CAS  Google Scholar 

  • Day KB, Draper J, Smith H (1986) Plant regeneration and thebaine content of plants derived from callus culture of Papaver bracteatum. Plant Cell Rep 5:471–474. doi:10.1007/BF00269645

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Vargas F, Jiménez AR, Paredes-López O (2000) Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289. doi:10.1080/10408690091189257

    Article  CAS  PubMed  Google Scholar 

  • Devi K, Sharma M, Ahuja PS (2014) Direct somatic embryogenesis with high frequency plantlet regeneration and successive cormlet production in saffron (Crocus sativus L.). South African J Bot 93:207–216. doi:10.1016/j.sajb.2014.04.006

    Article  Google Scholar 

  • Facchini PJ, Bohlmann J, Covello PS et al (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30:127–131. doi:10.1016/j.tibtech.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 54:763–784. doi:10.1111/j.1365-313X.2008.03438.x

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, Loukanina N, Blanche V (2008) Genetic transformation via somatic embryogenesis to establish herbicide-resistant opium poppy. Plant Cell Repo 27:719–727. doi:10.1007/s00299-007-0483-8

    Article  CAS  Google Scholar 

  • Favretto D, Piovan A, Filippini R, Caniato R (2001) Monitoring the production yields of vincristine and vinblastine in Catharanthus roseus from somatic embryogenesis. Semiquantitative determination by flow-injection electrospray ionization mass spectrometry. Rapid Comm Mass Spectr 15:364–369. doi:10.1002/rcm.239

    Article  CAS  Google Scholar 

  • Filippini R, Caniato R, Vecchia FD et al (2000) Somatic embryogenesis and indole alkaloid production in Catharanthus roseus. Plant Biosyst 134:179–184. doi:10.1080/11263500012331358444

    Article  Google Scholar 

  • Frick S, Chitty JA, Kramell R et al (2004) Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots. Transgenic Res 13:607–613. doi:10.1007/s11248-004-2892-6

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Ma XQ (2008) Ginger and turmeric ancient spices and modern medicines. In: Moore PH, Ming R (eds) Genomics of Tropical Crop Plants, pp 299–311. Springer, New York. doi:10.1007/978-0-387-71219-2_12

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846. doi:10.1016/j.phytochem.2007.09.017

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T (2008) The lost origin of chemical ecology in the late 19th century. Proc Natl Acad Sci (USA) 105:4541–4546. doi:10.1073/pnas.0709231105

    Article  CAS  Google Scholar 

  • He R, Gang DR (2014) Somatic embryogenesis and Agrobacterium-mediated transformation of turmeric (Curcuma longa). Plant Cell Tiss Org 116:333–342. doi:10.1007/s11240-013-0407-y

    Article  CAS  Google Scholar 

  • Jirschitzka J, Dolke F, D’Auria JC (2013) Increasing the pace of new discoveries in tropane alkaloid biosynthesis. New light on alkaloid biosynthesis and future prospects. Adv Bot Res 68:39–72. doi:10.1016/B978-0-12-408061-4.00002-X

    Article  CAS  Google Scholar 

  • Jordán MJ, Martínez RM, Goodner KL et al (2006) Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris L. essential oils composition. Ind Crops Prod 24:253–263. doi:10.1016/j.indcrop.2006.06.011

    Article  CAS  Google Scholar 

  • Junaid A, Mujib A, Bhat MA, Sharma MP (2006) Somatic embryo proliferation, maturation and germination in Catharanthus roseus. Plant Cell Tiss Org 84:325–332. doi:10.1007/s11240-005-9041-7

    Article  Google Scholar 

  • Junaid A, Mujib A, Bhat MA et al (2007) Somatic embryogenesis and plant regeneration in Catharanthus roseus. Biol Plant 51:641–646. doi:10.1007/s10535-007-0136-3

    Article  CAS  Google Scholar 

  • Kassem MA, Jacquin A (2001) Somatic embryogenesis, rhizogenesis, and morphinan alkaloids production in two species of opium poppy. BioMed Res Int 1:70–78. doi:10.1155/S1110724301000237

    Google Scholar 

  • Kim SW, In DS, Choi PS, Liu JR (2004) Plant regeneration from immature zygotic embryo-derived embryogenic calluses and cell suspension cultures of Catharanthus roseus. Plant Cell Tiss Org 76:131–135. doi:10.1023/B:TICU.0000007254.51387.7f

    Article  CAS  Google Scholar 

  • Kim SW, Song NH, Jung KH et al (1994) High frequency plant regeneration from anther-derived cell suspension cultures via somatic embryogenesis in Catharanthus roseus. Plant Cell Rep 13:319–322. doi:10.1007/BF00232629

    CAS  PubMed  Google Scholar 

  • Larkin PJ, Miller JA, Allen RS et al (2007) Increasing morphinan alkaloid production by over‐expressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol J 5:26–37. doi:10.1111/j.1467-7652.2006.00212.x/pdf

  • Lee SY, Choi PS, Chung HJ et al (2003) Comparison of adventitious shoot formation in petiole explant cultures of 20 cultivars of Catharanthus roseus. J Plant Biotechnol-Daejeon 5:59–62

    Google Scholar 

  • Levy A, Milo J (1997) Genetics and breeding of Papaver somniferum. In: Bernath J (ed) Poppy: The Genus Papaver. Harwood Academic, Amsterdam, pp 93–103

    Google Scholar 

  • Nigg JT, Lewis K, Edinger T, Falk M (2012) Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives. J Am Acad Child Adolesc Psy 51:86–97. doi:10.1016/j.jaac.2011.10.015

    Article  Google Scholar 

  • Nithiya P, Arockiasamy DI (2007) In vitro micropropagation of Datura metel L. through somatic embryos from root explants. Plant Tiss Cult Biotechnol 17:125–130. doi:10.3329/ptcb.v17i2.3231

    Google Scholar 

  • Nordine A, Tlemcani CR, El Meskaoui A (2014) Regeneration of plants through somatic embryogenesis in Thymus hyemalis Lange, a potential medicinal and aromatic plant. In Vitro Cell Dev Biol-Pl 50:19–25. doi:10.1007/s11627-013-9577-x

    Article  CAS  Google Scholar 

  • Ovečka M, Bobak M, Blehova A, Krištín J (1997) Papaver somniferum regeneration by somatic embryogenesis and shoot organogenesis. Biol Plant 40:321–328. doi:10.1023/A:1001049526976

    Article  Google Scholar 

  • Paiva Neto VBP, Botelho MN, Aguiar R et al (2003a) Somatic embryogenesis from immature zygotic embryos of annatto (Bixa orellana L.). In Vitro Cell Dev Biol-Plant 39:629–634. doi:10.1079/IVP2003465

    Article  Google Scholar 

  • Paiva Neto VB, da Mota TR, Otoni WC (2003b) Direct organogenesis from hypocotyl-derived explants of annatto (Bixa orellana). Plant Cell Tiss Org 75:159–167. doi:10.1023/A:1025063906822

    Article  Google Scholar 

  • Pathak S, Mishra BK, Misra P et al (2012) High frequency somatic embryogenesis, regeneration and correlation of alkaloid biosynthesis with gene expression in Papaver somniferum. Plant Growth Regul 68:17–25. doi:10.1007/s10725-012-9689-z

    Article  CAS  Google Scholar 

  • Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Ann RevPlant Biol 62:549–566. doi:10.1146/annurev-arplant-042110-103814

    Article  CAS  Google Scholar 

  • Potera C (2010) Diet and nutrition: the artificial food dye blues. Environ Health Perspect 118:A428

    Article  PubMed  PubMed Central  Google Scholar 

  • Raju CS, Aslam A, Shajahan A (2015) High-efficiency direct somatic embryogenesis and plant regeneration from leaf base explants of turmeric (Curcuma longa L.). Plant Cell Tiss Org 122:79–87. doi:10.1007/s11240-015-0751-1

    Article  CAS  Google Scholar 

  • Raju CS, Kathiravan K, Aslam A, Shajahan A (2013) An efficient regeneration system via somatic embryogenesis in mango ginger (Curcuma amada Roxb.). Plant Cell Tiss Org 112:387–393. doi:10.1007/s11240-012-0244-4

    Article  CAS  Google Scholar 

  • Raomai S, Kumaria S, Tandon P (2014) Plant regeneration through direct somatic embryogenesis from immature zygotic embryos of the medicinal plant Paris polyphylla Sm. Plant Cell Tiss Org 118:445–455. doi:10.1007/s11240-014-0496-2

    Article  CAS  Google Scholar 

  • Rivera-Madrid R, Escobedo-Gracia-Medrano RM, Balam-Galera E et al (2006) Preliminary studies toward genetic improvement of annatto (Bixa orellana L.). Sci Hortic 109:165–172. doi:10.1016/j.scienta.2006.03.011

    Article  CAS  Google Scholar 

  • Scheible W-R, Morcuende R, Czechowski T et al (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499. doi:10.1104/pp.104.047019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schivelbusch W (1992) Tastes of paradise: a social history of spices, stimulants, and intoxicants. Pantheon Books, New York

    Google Scholar 

  • Schuchmann R, Wellmann E (1983) Somatic embryogenesis of tissue cultures of Papaver somniferum and Papaver orientale and its relationship to alkaloid and lipid metabolism. Plant Cell Rep 2:88–91. doi:10.1007/BF00270173

    Article  CAS  PubMed  Google Scholar 

  • Shyamkumar B, Anjaneyulu C, Giri CC (2003) Multiple shoot induction from cotyledonary node explants of Terminalia chebula. Biol Plant 47:585–588. doi:10.1023/B:BIOP.0000041066.78766.34

    Article  Google Scholar 

  • Shyamkumar B, Anjaneyulu C, Giri CC (2007) Genetic transformation of Terminalia chebula Retz. and detection of tannin. Curr Sci 92:361–367

    CAS  Google Scholar 

  • Tepe B, Sarikurkcu C, Berk S et al (2011) Chemical composition, radical scavenging and antimicrobial activity of the essential oils of Thymus boveii and Thymus hyemalis. Rec Nat Prod 5:208–220

    CAS  Google Scholar 

  • Tu S, Sangwan RS, Sangwan-Norreel BS (2005) Improved efficiency of somatic embryogenesis from zygotic embryos in Hyoscyamus niger by seed water-soaking. Sci Hortic 106:440–445. doi:10.1016/j.scienta.2005.03.014

    Article  CAS  Google Scholar 

  • Vázquez-Flota FA, Loyola-Vargas VM (2003) In vitro plant cell culture as the basis for the development of a Research Institute in México: Centro de Investigación Científica de Yucatán. In Vitro Cell Dev-Pl 39:250–258. doi:10.1079/IVP2002398

    Article  Google Scholar 

  • Wijesekara KB, Iqbal MCM (2013) Absence of meristems in androgenic embryos of Datura metel (L.) induces secondary embryogenesis in vitro. Sci Hortic 164:287–294. doi:10.1016/j.scienta.2013.07.007

    Article  Google Scholar 

  • Xiao X, Bai P, Nguyen TMB et al (2009) The antitumoral effect of Paris Saponin I associated with the induction of apoptosis through the mitochondrial pathway. Mol Cancer Therap 8:1179–1188. doi:10.1158/1535-7163.MCT-08-0939

    Article  CAS  Google Scholar 

  • Yu F, De Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci (USA) 110:15830–15835. doi:10.1073/pnas.1307504110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe A. Vázquez-Flota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vázquez-Flota, F.A., Monforte-González, M., de Lourdes Miranda-Ham, M. (2016). Application of Somatic Embryogenesis to Secondary Metabolite-Producing Plants. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33705-0_25

Download citation

Publish with us

Policies and ethics