Skip to main content

Chapter 3 The 1960s: Explosive Growth

  • Chapter
  • First Online:
Impactful Times

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 761 Accesses

Abstract

The 1960s witnessed phenomenal growth of shock wave capabilities at Sandia. Along with rapidly evolving techniques for producing precisely controlled loading at ever-increasing shock pressures, pivotal improvements in precision diagnostics were occurring at a record rate. The goal was to probe the detailed structure of shock waves to understand specific aspects of dynamic material response, such as the ubiquitous two-wave structure observed in materials that exhibit both elastic and plastic response under shock loading. This information was needed for the new material models being developed. It was important, as well, to apply this new technology to the pressing requirements of the nation’s defense community. In particular, it was necessary to understand the stress response of materials in nuclear environments, such as the stress wave response of materials subjected to pulsed radiation sources, so that appropriate experimental techniques and material models could be developed to simulate effects on weapon components and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Private conversation between Don Lundergan and Jim Asay, December 2012.

  2. 2.

    Private communication from Orval Jones to Jeff Lawrence, August 2013.

  3. 3.

    Lundergan was a section supervisor in 1960 and became Division Supervisor of the Materials Properties Test Division in 1962.

  4. 4.

    Rigorously, longitudinal stress is in the model description, but historically this was referred to as pressure, hence the term P-α model.

  5. 5.

    The Lagrangian frame of reference is fixed in material coordinates.

  6. 6.

    The Eulerian frame of reference is fixed in the laboratory.

References

  • J.R. Asay, G.R. Fowles, G.E. Duvall, M.H. Miles, R.F. Tinder, Effects of point defects on elastic precursor decay in LiF. J. Appl. Phys. 45(5), 2132–2145 (1972)

    Article  Google Scholar 

  • J.R. Asay, D. Hicks, D. Holdridge, Comparison of experimental and calculated elastic-plastic wave profiles in LiF. J. Appl. Phys. 46, 4316–4322 (1975)

    Article  Google Scholar 

  • J.R. Asay, J. Lipkin, A self-consistent technique for estimating the dynamic strength of a shock-loaded material. J. Appl. Phys. 49, 4242–4247 (1978)

    Article  Google Scholar 

  • L.M. Barker, Measurement of Free Surface Motion by the Slanted Resistor Technology. Sandia National Laboratories Report SC-DR-610078 (Sandia National Laborator, Albuquerque, NM, 1961)

    Google Scholar 

  • L.M. Barker, Determination of Shock Wave and Particle Velocities from Slanted Resistor Data. Sandia National Laboratories Report SC004611 (RR) (Sandia National Laboratory, Albuquerque, NM, 1962)

    Google Scholar 

  • L.M. Barker, R.E. Hollenbach, System for measuring the dynamic properties of materials. Rev. Sci. Instrum. 35, 742–746 (1964)

    Article  Google Scholar 

  • L.M. Barker, C.D. Lundergan, W. Herrmann, Dynamic response of aluminum. J. Appl. Phys. 35(4), 1203–1212 (1964)

    Article  Google Scholar 

  • L.M. Barker, R.E. Hollenbach, Interferometer technique for measuring the dynamic mechanical properties of materials. Rev. Sci. Instrum. 36(11), 1617–1620 (1965)

    Article  Google Scholar 

  • L.M. Barker, B.M. Butcher, C.H. Karnes, Yield point phenomenon in impact-loaded 1060 aluminum. J. Appl. Phys. 37(5), 1989–1991 (1966)

    Article  Google Scholar 

  • L.M. Barker, Fine structure of compressive and release wave shapes in aluminum measured by the velocity interferometer technique, in Behavior of Dense Media Under High Dynamic Pressures, Proceedings of IUTAM Symposium on the Behavior of Dense Media Under High Dynamic Pressures, Paris, France, September 11–16, 1967, ed. by J. Berger (Gordon and Breach, New York, NY, 1968), pp. 483–504

    Google Scholar 

  • L.M. Barker, R.E. Hollenbach, Shock wave studies of PMMA, fused silica, and sapphire. J. Appl. Phys. 41(10), 4208–4226 (1970)

    Article  Google Scholar 

  • L.M. Barker, A model for stress wave propagation in composite materials. J. Compos. Mater. 5(2), 140–162 (1971b)

    Article  Google Scholar 

  • L.M. Barker, R.E. Hollenbach, A laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43(11), 4669–4675 (1972)

    Article  Google Scholar 

  • L.M. Barker, E.G. Young, SWAP-9: An Improved Stress Wave Analyzing Program. Sandia National Laboratories Report SLA-74-0009 (Sandia National Laboratory, Albuquerque, NM, 1974) [This version supersedes an earlier report by Barker dated 1969]

    Google Scholar 

  • L.M. Barker, C.D. Lundergan, P.J. Chen, M.E. Gurtin, Nonlinear viscoelasticity and the evolution of stress waves in laminated composites: a comparison of theory and experiment. J. Appl. Mech. 41, 1025–1030 (1974b)

    Article  Google Scholar 

  • L.M. Barker, The development of the VISAR, and its use in shock compression science, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000a), pp. 11–17

    Google Scholar 

  • F. Bauer, R.A. Graham, M.U. Anderson, H. Lefebvre, L.M. Lee, R.P. Reed, Response of the piezoelectric polymer PVDF to shock compression greater than 10 GPa, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 887–890

    Google Scholar 

  • L.D. Bertholf, L.D. Buxton, B.J. Thorne, R.K. Byers, A.L. Stevens, S.L. Thompson, Damage in steel plates from hypervelocity impact. II. Numerical results and spall measurement. J. Appl. Phys. 46, 3776–3783 (1975)

    Article  Google Scholar 

  • M.B. Boslough, J.R. Asay, Basic principles of shock compression (Chapter 2), in High-Pressure Shock Compression of Solids, ed. by J.R. Asay, M. Shahinpoor (Springer, New York, NY, 1993), pp. 7–42

    Chapter  Google Scholar 

  • B.M. Butcher, C.H. Karnes, Strain rate effects in metals. J. Appl. Phys. 37, 402–411 (1966)

    Article  Google Scholar 

  • B.M. Butcher, Spallation in 4340 steel. J Appl. Mech. Ser. E 89(1), 209–210 (1967)

    Article  Google Scholar 

  • B.M. Butcher, D.E. Munson, The application of dislocation dynamics to impact-induced deformation under uniaxial strain, in Dislocation Dynamics, ed. by A.R. Rosenfield, G.T. Hahn, A.L. Bement, R.J. Jaffe (McGraw Hill, New York, NY, 1967), pp. 591–607

    Google Scholar 

  • B.M. Butcher, Spallation in 6061-T6 aluminum, in Behavior of dense media under high dynamic pressures, proceedings of IUTAM symposium on the behavior of dense media under high dynamic pressures (Paris, France, September 11–16, 1967), ed. by J. Berger (Gordon and Breach, New York, NY, 1968), pp. 245–250

    Google Scholar 

  • B.M. Butcher, C.H. Karnes, Dynamic compaction of porous iron. J. Appl. Phys. 40(7), 2967–2976 (1969)

    Article  Google Scholar 

  • B.M. Butcher, The description of strain-rate effects in shocked porous materials, in Shock Waves and the Mechanical Properties of Solids, ed. by J.J. Burke, V. Weiss (Syracuse University Press, Syracuse, NY, 1971), pp. 227–243

    Google Scholar 

  • B.M. Butcher, Dynamic response of partially compacted porous aluminum during unloading. J. Appl. Phys. 44, 4576–4582 (1973)

    Article  Google Scholar 

  • B.M. Butcher, L.A. Kent, L.M. Lee, A method for measuring unloading paths in partially compacted strain-rate insensitive porous materials. Sandia National Laboratories Report SLA-73-0152 (Sandia National Laboratory, Albuquerque, NM, 1973)

    Google Scholar 

  • B.M. Butcher, M.M. Carroll, A.C. Holt, Shock wave compaction of porous aluminum. J. Appl. Phys. 45, 3864–3875 (1974)

    Article  Google Scholar 

  • P.J. Chen, P.C. Lysne, H.J. Sutherland, Electrical Responses of Ferroelectric Ceramics to Dynamic Loads of Uniaxial Strain Propagation of Shock Waves in Solids (The American Society of Mechanical Engineers, New York, NY, 1976a), pp. 73–78

    Google Scholar 

  • P.J. Chen, L.W. Davison, M.F. McCarthy, Electrical responses of nonlinear piezoelectric materials to plane waves of uniaxial strain. J. Appl. Phys. 47(11), 4759–4764 (1976b)

    Article  Google Scholar 

  • P.J. Chen, S.T. Montgomery, Normal mode responses of linear piezoelectric materials with hexagonal symmetry. Int. J. Solids Struct. 13, 947–955 (1977)

    Article  Google Scholar 

  • P.J. Chen, S.T. Montgomery, Boundary effects on the normal-mode responses of linear transversely isotropic piezoelectric materials. J. Appl. Phys. 49(2), 900–904 (1978)

    Article  Google Scholar 

  • P.J. Chen, M.F. McCarthy, T.R. O'Leary, One-dimensional shock and acceleration waves in deformable dielectric materials with memory. Arch. Ration. Mech. Anal. 62(2), 189–207 (1978)

    MathSciNet  MATH  Google Scholar 

  • P.J. Chen, S.T. Montgomery, A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity. Ferroelectrics 23(1), 199–207 (1980)

    Article  Google Scholar 

  • L.C. Chhabildas, J.R. Asay, Rise-time measurements of shock transitions in aluminum, copper, steel. J. Appl. Phys. 50(4), 2749–2756 (1979)

    Article  Google Scholar 

  • L.W. Davison, J.N. Johnson, Elastoplastic Wave Propagation and Spallation in Beryllium: A Review. Sandia National Laboratories Report SC-TM-70-634 (Sandia National Laboratory, Albuquerque, NM, 1970)

    Google Scholar 

  • L.W. Davison, Shock-wave structure in porous solids. J. Appl. Phys. 42(13), 5503–5512 (1971)

    Article  Google Scholar 

  • L.W. Davison, A.L. Stevens, Continuum measures of spall damage. J. Appl. Phys. 43(3), 988–994 (1972)

    Article  Google Scholar 

  • L.W. Davison, J. Kennedy, F. Coffey, Behavior and utilization of explosives in engineering design, Proceedings 12th annual symposium on New Mexico Section of the American Society of Mechanical Engineers (American Society of Mechanical Engineers, New York, NY, 1972)

    Google Scholar 

  • L.W. Davison, A.L. Stevens, Thermomechanical constitution of spalling elastic bodies. J. Appl. Phys. 44(2), 668–674 (1973)

    Article  Google Scholar 

  • L.W. Davison, Explosion Containment Devices: Design Considerations. Sandia National Laboratories Report SAND74-0218 (Sandia National Laboratory, Albuquerque, NM, 1974)

    Google Scholar 

  • L.W. Davison, A.L. Stevens, M.E. Kipp, Theory of spall damage accumulation in ductile metals. J. Mech. Phys. Solids 25, 11–28 (1977)

    Article  Google Scholar 

  • L.W. Davison, R.A. Graham, Shock compression of solids. Physics Reports 55(4), 255–359 (1979)

    Article  Google Scholar 

  • L.W. Davison, Fundamentals of Shock Wave Propagation in Solids (Springer, Berlin, 2008)

    MATH  Google Scholar 

  • D.S. Drumheller, Introduction to Wave Propagation in Nonlinear Fluids and Solids (Cambridge University Press, New York, NY, 1998)

    Book  Google Scholar 

  • G. Fenton, D.E. Grady, T.J. Vogler, Intense shock compression of porous solids: application to WC and Ta2O5, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler, vol. 1426 (AIP, College Park, MD, 2012), pp. 1463–1466

    Google Scholar 

  • J.W. Forbes, Shock Wave Compression of Condensed Matter: A Primer (Springer, Berlin, 2012)

    Book  Google Scholar 

  • D.E. Fratanduono, T.R. Boehly, M.A. Barrios, D.D. Meyerhofer, J.H. Eggert et al., Refractive index of lithium fluoride ramp compressed to 800 GPa. J. Appl. Phys. 109, 123521 (2011)

    Article  Google Scholar 

  • M.D. Furnish, L.C. Chhabildas, W.D. Reinhart, Time-resolved particle velocity measurements at impact velocities of 10 km/s. Int. J. Impact Eng. 23(1), 261–270 (1999)

    Article  Google Scholar 

  • D.E. Grady, Strain-rate dependence of effective viscosity under steady-wave shock compression. Appl. Phys. Lett. 38, 825–826 (1981b)

    Article  Google Scholar 

  • D.E. Grady, N.A. Winfree, G.I. Kerley, L.T. Wilson, L.D. Kuhns, Computational modeling and wave propagation in media with inelastic deforming microstructure. J. Phys. IV 10, 15–20 (2000)

    Google Scholar 

  • D.E. Grady, N.A. Winfree, A computational model for polyurethane foam, in Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by K.P. Staudhammer, L.E. Murr, M.A. Meyers (Elsevier, New York, NY, 2001), pp. 485–491

    Google Scholar 

  • D.E. Grady, Unifying role of dissipative action in the dynamic failure of solids. J. Appl. Phys. 117, 165905 (2015)

    Article  Google Scholar 

  • R.A. Graham, Technique for studying piezoelectricity under transient high stress conditions. Rev. Sci. Instrum. 32(12), 1308–1313 (1961b)

    Article  Google Scholar 

  • R.A. Graham, G.E. Ingram, W.D. Ingram, Performance of a High Velocity Powder Gun. Sandia National Laboratories Research Report SC-4652 (RR) (Sandia National Laboratory, Albuquerque, NM, 1961)

    Google Scholar 

  • R.A. Graham, Dielectric anomaly in quartz for high transient stress and field. J. Appl. Phys. 33(5), 1755–1758 (1962)

    Article  Google Scholar 

  • R.A. Graham, F.W. Neilson, W.B. Benedick, Piezoelectric current from shock-loaded quartz – a submicrosecond stress gauge. J. Appl. Phys. 36(5), 1775–1783 (1965b)

    Article  Google Scholar 

  • R.A. Graham, R.E. Hutchison, Thermoelastic stress pulses resulting from pulsed electron beams. Appl. Phys. Lett. 11(2), 69–71 (1967)

    Article  Google Scholar 

  • R.A. Graham, D.H. Anderson, J.R. Holland, Shock wave compression of 30% Ni – 70% Fe alloys: the pressure-induced magnetic transition. J. Appl. Phys. 38, 223–229 (1967a)

    Article  Google Scholar 

  • R.A. Graham, R.E. Hutchison, W.B. Benedick, Pulsed electron beam calorimetry utilizing stress wave measurements in solid absorbers, in 9th IEEE Annual Symposium on Electron, Ion, and Laser Beam Technology, ed. by R.F.W. Pease (San Francisco Press, San Francisco, CA, 1967b), pp. 70–76

    Google Scholar 

  • R.A. Graham, G.E. Ingram, A shock-wave stress gauge utilizing the capacitance change of a solid dielectric disc, in Behavior of Dense Media Under High Dynamic Pressure, ed. by J. Berger (Gordon and Breach, New York, NY, 1968), pp. 469–482

    Google Scholar 

  • R.A. Graham, O.E. Jones, A summary of Hugoniot Elastic Limit Measurements. Sandia National Laboratories Report SC-R-68-1857 (Sandia National Laboratory, Albuquerque, NM, 1968)

    Google Scholar 

  • R.A. Graham, Determination of third- and fourth-order longitudinal elastic constants by shock compression techniques: application to sapphire and fused quartz. J. Acoust. Soc. Am. 51(5), 1576–1581 (1972a)

    Article  Google Scholar 

  • R.A. Graham, Strain dependence of longitudinal, piezoelectric elastic, and dielectric constants of X-cut quartz. Phys. Rev. B6(12), 4779–4792 (1972b)

    Article  Google Scholar 

  • R.A. Graham, R.D. Jacobson, Lithium niobate stress gauge for pulsed radiation deposition studies. Appl. Phys. Lett. 23(11), 584–586 (1973)

    Article  Google Scholar 

  • R.A. Graham, Piezoelectric current from shunted and shorted guard-ring quartz gauges. J. Appl. Phys. 46(5), 1901–1909 (1975)

    Article  Google Scholar 

  • R.A. Graham, P.J. Chen, A new electrical to mechanical coupling effect for nonlinear piezoelectric solids. Solid State Commun. 17, 469–471 (1975)

    Article  Google Scholar 

  • R.A. Graham, L.C. Yang, Inherent time delay for dielectric breakdown in shock loaded X-cut quartz. J. Appl. Phys. 46(12), 5300–5301 (1975)

    Article  Google Scholar 

  • R.A. Graham, Pressure dependence of the piezoelectric polarization of LiNbO3 and LiTaO3. Ferroelectrics 10, 65–69 (1976)

    Article  Google Scholar 

  • R.A. Graham, Second- and third-order piezoelectric stress constants of lithium niobate as determined by the impact-loading technique. J. Appl. Phys. 48(6), 2153–2163 (1977)

    Article  Google Scholar 

  • R.A. Graham, R.P. Reed (eds.), Selected Papers on Piezoelectricity and Impulsive Pressure Measurements. Sandia National Laboratories Report SAND78-1911 (Sandia National Laboratory, Albuquerque, NM, 1978)

    Google Scholar 

  • R.A. Graham, Measurement of wave profiles in shock-loaded solids, in High-Pressure Science and Technology, ed. by K.D. Timmerhaus, M.S. Barber, vol. 2 (Plenum, New York, NY, 1979a), pp. 854–869

    Google Scholar 

  • R.A. Graham, Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model. J. Phys. Chem. 83(23), 3048–3056 (1979b)

    Article  Google Scholar 

  • R.A. Graham, Electrical activity in shock-loaded polymers, in High Pressure in Science and Technology, ed. by K.D. Timmerhaus, M.S. Barber (Pergamon, Oxford, 1980), pp. 1032–1039

    Google Scholar 

  • R.A. Graham, M.U. Anderson, F. Bauer, R.E. Setchell, Piezoelectric polarization of the ferroelectric polymer PVDF from 10 MPa to 10 GPa: studies of loading-path dependence, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 883–886

    Google Scholar 

  • T.R. Guess, L.M. Lee, Spall Strengths of Five Carbon Materials. Sandia Laboratories Development Report SC-DR-68-604 (Sandia Laboratory, Albuquerque, NM, 1968)

    Google Scholar 

  • D.B. Hayes, L. Kennedy, Unfolding of Quartz Gage Records. Sandia National Laboratories Report SC-TM-690635 (Sandia National Laboratory, Albuquerque, NM, 1969)

    Google Scholar 

  • D.B. Hayes, D.E. Mitchell, A constitutive equation for the shock response of porous hexanitrostilbene (HNS) explosive. Symposium on High Pressures, Commissariat a l'Energie Atomique, Paris, France, August 1978, 22 (1978)

    Google Scholar 

  • W. Herrmann, E.A. Witmer, J.H. Percy, A.H. Jones, Stress wave propagation and spallation in uniaxial strain. Air Force Systems Command Technical Documentary Report ASD-TDR-62-399 (1962)

    Google Scholar 

  • W. Herrmann, P. Holzhauser, R.J. Thompson, WONDY – a computer program for calculating problems of motion in one dimension. Sandia National Laboratories Report SC-RR-66-601 (Sandia National Laboratory, Albuquerque, NM, 1967)

    Book  Google Scholar 

  • W. Herrmann, Equation of State of Crushable Distended Materials. Sandia National Laboratories Report SC-RR-66-2678 (Sandia National Laboratory, Albuquerque, NM, 1968)

    Google Scholar 

  • W. Herrmann, Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 40(6), 2490–2499 (1969a)

    Article  Google Scholar 

  • W. Herrmann, On the Dynamic Compaction of Initial Heated Porous Materials. Sandia National Laboratories Report SC-DR-680865 (Sandia National Laboratory, Albuquerque, NM, 1969b)

    Google Scholar 

  • W. Herrmann, Nonlinear stress waves in metals, in Wave Propagation in Solids, ed. by J. Miklowitz (American Society of Mechanical Engineers, New York, NY, 1969c), pp. 129–183

    Google Scholar 

  • W. Herrmann, R.J. Lawrence, D.S. Mason, Strain hardening and strain rate in one-dimensional wave propagation calculations. Sandia National Laboratories Report SC-RR-70-471 (Sandia National Laboratory, Albuquerque, NM, 1970)

    Google Scholar 

  • W. Herrmann, Constitutive equations for compaction of porous materials, in Applied Mechanics Aspects of Nuclear Effects, ed. by C.C. Wan (American Society of Mechanical Engineers, New York, NY, 1971), pp. 142–168

    Google Scholar 

  • W. Herrmann, Constitutive Equations for the Compaction of Porous Materials. Sandia National Laboratories Report SC-DC-71-4134 (Sandia National Laboratory, Albuquerque, NM, 1972)

    Google Scholar 

  • W. Herrmann. On the evaluation of constitutive equations from experiment. In: Recent Advances in Engineering Science 6, Proceedings of the Society of Engineering Science 10th Anniversary Meeting (1973), pp. 297–307

    Google Scholar 

  • W. Herrmann, Development of a high strain rate constitutive equation for 6061-T6 aluminum. Sandia National Laboratories Report SLA-73-0897 (Sandia National Laboratory, Albuquerque, NM, 1974)

    Google Scholar 

  • W. Herrmann, R.J. Lawrence, The effect of material constitutive models on stress wave propagation calculations. J. Eng. Mater. Technol. Trans. ASME 100, 84–95 (1978)

    Article  Google Scholar 

  • W. Herrmann, L.D. Bertholf, Explicit Lagrangian finite-difference methods, in Computational Methods for Transient Analysis (Mechanics and Mathematical Methods—Series of Handbooks), ed. by T. Belytschko, T. Hughes, vol. 1 (Elsevier, North-Holland, 1983), pp. 361–415

    Google Scholar 

  • A.C. Holt, M.M. Carroll, B.M. Butcher, Application of a new theory for the pressure-induced collapse of pores in ductile materials, in Proceedings of the RILEM-IUPAC International Symposium on Pore Structure and Properties of Materials (Prague, Czechoslovakia, September 18–21, 1973), Part 5, ed. by S. Modry (Academia, Prague, 1974), pp. 63–76

    Google Scholar 

  • J.N. Johnson, A Theory of Rate-Dependent Behavior for Porous Solids: Steady-Propagating Compaction Wave Profiles. Sandia National Laboratories Report SC-RR-68-151 (Sandia National Laboratory, Albuquerque, NM, 1968a)

    Google Scholar 

  • J.N. Johnson, Elastic precursor decay in quartzite for cylindrical and spherical flow. J. Appl. Phys. 39(1), 290–296 (1968b)

    Article  Google Scholar 

  • J.N. Johnson, L.M. Barker, Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. J. Appl. Phys. 40(11), 4321–4334 (1969)

    Article  Google Scholar 

  • J.N. Johnson, O.E. Jones, T.E. Michaels, Dislocation dynamics and single-crystal constitutive relations: shock-wave propagation and precursor decay. J. Appl. Phys. 41(6), 2330–2339 (1970)

    Article  Google Scholar 

  • J.N. Johnson, Shock propagation produced by planar impact in linearly elastic anisotropic media. J. Appl. Phys. 42(13), 5522–5530 (1971)

    Article  Google Scholar 

  • J.N. Johnson, R.W. Rohde, Dynamic deformation twinning in shock-loaded iron. J. Appl. Phys. 42(11), 4171–4182 (1971)

    Article  Google Scholar 

  • J.N. Johnson, An analysis of thermally-induced plane waves in elastic-plastic single crystals. J. Mech. Phys. Solids 20, 367–380 (1972a)

    Article  MATH  Google Scholar 

  • J.N. Johnson, Calculation of plane-wave propagation in anisotropic elastic-plastic solids. J. Appl. Phys. 43(5), 2074–2082 (1972b)

    Article  Google Scholar 

  • J.N. Johnson, Wave velocities in shock-compressed cubic and hexagonal single crystals above the elastic limit. J. Phys. Chem. Solids 35(5), 609–616 (1974b)

    Article  Google Scholar 

  • J.N. Johnson, L.E. Pope, Shock-wave compression of single-crystal beryllium. J. Appl. Phys. 46, 720–729 (1975)

    Article  Google Scholar 

  • J.N. Johnson, Micromechanical considerations in shock compression of solids, in High-Pressure Shock Compression of Solids, ed. by J.R. Asay, M. Shahinpoor (Springer, New York, NY, 1993), pp. 222–240

    Google Scholar 

  • O.E. Jones, F.W. Neilson, W.B. Benedick, Dynamic yield behavior of explosively loaded metals determined by a quartz transducer technique. J. Appl. Phys. 33(11), 3224–3232 (1962)

    Article  Google Scholar 

  • O.E. Jones, J.R. Holland, Bauschinger effect in explosively loaded mild steel. J. Appl. Phys. 35, 1771–1773 (1964)

    Article  Google Scholar 

  • O.E. Jones, J.R. Holland, Effects of grain size on dynamic yielding in explosively loaded mild steel. Acta Metall. 16, 1037–1045 (1968)

    Article  Google Scholar 

  • O.E. Jones, J.D. Mote, Shock-induced dynamic yielding in copper single crystals. J. Appl. Phys. 40(12), 4920–4928 (1969)

    Article  Google Scholar 

  • O.E. Jones, Shock waves and the mechanical properties of solids, in Engineering Solids Under Pressure, ed. by H. Pugh, D. Li (Institution of Mechanical Engineers, London, 1971), pp. 75–86

    Google Scholar 

  • O.E. Jones, R.A. Graham, Shear strength effects on phase transition pressures determined from shock-compression experiments, in Accurate Characterization of the High Pressure Environment, National Bureau of Standards Special Publication 326, ed. by E.C. Lloyd (U.S. Government Printing Office, Washington, DC, 1971), pp. 229–242

    Google Scholar 

  • O.E. Jones, Metal response under explosive loading, in Behavior and Utilization of Explosives in Engineering Design (Proceedings 12th Annual Symposium New Mexico Section of the American Society of Mechanical Engineers), ed. by L.W. Davison, J. Kennedy, F. Coffey (NM Section ASME, Albuquerque, NM, 1972), pp. 125–148

    Google Scholar 

  • O.E. Jones, Shock wave mechanics, in Metallurgical Effects at High Strain Rates, ed. by R.W. Rohde, B.M. Butcher, J.R. Holland, C.H. Karnes (Plenum, New York, NY, 1973), pp. 33–55

    Chapter  Google Scholar 

  • J.E. Kennedy, Quartz gauge study of upstream reaction in a shocked explosive, in Proceedings of the 5th International Detonation Symposium, Pasadena, CA, Office of Naval Research Report ONR ACR-184, ed. by S.J. Jacobs, R. Roberts (Office of Naval Research, San Diego, CA, 1970), pp. 435–445

    Google Scholar 

  • M.E. Kipp, R.J. Lawrence, WONDY V – A One-Dimensional Finite-Difference Wave Propagation Code. Sandia National Laboratories Report SAND81-0930 (Sandia National Laboratory, Albuquerque, NM, 1982)

    Book  Google Scholar 

  • R.W. Kulterman, F.W. Neilson, W.B. Benedick, Pulse generator based on high shock demagnetization of ferromagnetic material. J. Appl. Phys. 29, 500–501 (1958)

    Article  Google Scholar 

  • R.J. Lawrence, WONDY IIIA: A Computer Program for One-Dimensional Wave Propagation. Sandia National Laboratories Report SC-DR-70-315 (Sandia National Laboratory, Albuquerque, NM, 1970)

    Google Scholar 

  • R.J. Lawrence, A Nonlinear Viscoelastic Equation of State for Use in Stress Propagation Calculations. Sandia National Laboratories Report SLA-73-0635 (Sandia National Laboratory, Albuquerque, NM, 1973)

    Google Scholar 

  • R.J. Lawrence, J.T. Kare, R.M. Zazworsky, D.K. Monroe, System requirements for low earth orbit launch using laser propulsion. Proceedings of the 6th International Conference on Emerging Nuclear Energy Systems (ICENES 91). Fusion Technol 20, 714–718 (1991)

    Google Scholar 

  • R.J. Lawrence, T.A. Mehlhorn, T.A. Haill et al., Analysis of radiation-driven jetting experiments on Nova and Z, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 291–294

    Google Scholar 

  • R.J. Lawrence, J.R. Asay, Y.M. Gupta, C.J. Bakeman, T.A. Haill, Fragment Producing Chemical-Electrical Launcher (FP-CEL): Feasibility Study (Part I). Sandia National Laboratories Report SAND2008-7999 (Sandia National Laboratory, Albuquerque, NM, 2009a)

    Google Scholar 

  • R.J. Lawrence, T.A. Haill, B.L. Freeman, Y.M. Gupta, Fragment Producing Chemical-Electrical Launcher (FP-CEL): Numerical Analysis (Part II). Sandia National Laboratories Report SAND2008-8000 (Sandia National Laboratory, Albuquerque, NM, 2009b)

    Google Scholar 

  • R.J. Lawrence, M.D. Furnish, J.L. Remo, Analytic models for pulsed x-ray impulse coupling, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler, vol. 1426 (AIP, College Park, MD, 2012), pp. 883–886

    Google Scholar 

  • L.M. Lee, Some Dynamic Mechanical Properties of Pyrolytic Boron Nitride. Sandia National Laboratories Report SC-RR-67-2947 (Sandia National Laboratory, Albuquerque, NM, 1967)

    Google Scholar 

  • L.M. Lee, Dynamic Compaction of Distended Isotropic Pyrolytic Boron Nitride. Sandia National Laboratories Report SC-RR-68-2 (Sandia National Laboratory, Albuquerque, NM, 1968)

    Google Scholar 

  • L.M. Lee, Shock Response of Distended CVD Carbon Felt. Sandia National Laboratories Report SC-RR-72-0814 (Sandia National Laboratory, Albuquerque, NM, 1972)

    Google Scholar 

  • L.M. Lee, W.D. Williams, R.A. Graham, F. Bauer, Studies of the Bauer piezoelectric polymer gauge (PVDF) under impact loading, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 497–502

    Chapter  Google Scholar 

  • L.M. Lee, R.A. Graham, F. Bauer, R.P. Reed, Standardized Bauer PVDF piezoelectric polymer shock gauge. In DYMAT 88 – 2nd international conference on mechanical and physical behaviour of materials under dynamic loading. J Phys Colloques 49(C3), 651–657 (1988)

    Article  Google Scholar 

  • L.M. Lee, D.A. Hyndman, R.P. Reed, F. Bauer, PVDF applications in shock measurements, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, Amsterdam, 1990), pp. 821–824

    Google Scholar 

  • L.M. Lee, D.E. Johnson, F. Bauer, R.P. Reed, J.I. Greenwoll, Piezoelectric polymer PVDF application under soft x-ray induced shock loading, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 879–882

    Google Scholar 

  • H.E. Lindberg, A.L. Florence, Dynamic pulse buckling – theory and experiment DNA 6503H (Defense Nuclear Agency, Washington, DC, 1983) [Both Martinus Nijhoff Pubs., Dordrecht, The Netherlands and Springer (in English) published versions of Lindberg and Florence’s book in 1987]

    Google Scholar 

  • C.D. Lundergan, A Method for Measuring (1) the Parameter of Impact Between Two Surfaces and (2) the Properties of the Plane Shock waves Produced. Sandia National Laboratories Report SC-4421 (Sandia National Laboratory, Albuquerque, NM, 1960)

    Google Scholar 

  • C.D. Lundergan, The Hugoniot Equation of State of 6061-T6 Aluminum at Low Pressures. Sandia National Laboratories Report SC-4637 (RR) (Sandia National Laboratory, Albuquerque, NM, 1961)

    Google Scholar 

  • C.D. Lundergan, J.H. Smith, Method of Determining Spall Thresholds Using One-Dimensional Shock Waves. Sandia National Laboratories Report SC-DC-2629 (Sandia National Laboratory, Albuquerque, NM, 1962)

    Google Scholar 

  • C.D. Lundergan, Spall Fracture Proceedings of Symposium on Structural Dynamics Under High Impulse Loading, Office of Aerospace Research and Aeronautical Systems Division, Wright-Patterson Air Force Base Dayton, Ohio, Report No. ASD-TDR-63-140 (Wright-Patterson Air Force Base, Dayton, OH, 1963), pp. 357–381

    Google Scholar 

  • C.D. Lundergan, W. Herrmann, Equation of state of 6061-T6 aluminum at low pressures. J. Appl. Phys. 34(7), 2046–2052 (1963)

    Article  Google Scholar 

  • C.D. Lundergan, Discussion of the transmitted waveforms in a periodic laminated composite. J. Appl. Phys. 42(11), 4148–4155 (1970)

    Article  Google Scholar 

  • C.D. Lundergan, D.S. Drumheller, Dispersion of shock waves in composite materials, in Shock Waves and the Mechanical Properties of Solids, Vol 17 (Proceedings of 17th Sagamore Army Materials Research Center Conference), ed. by J.J. Burke, V. Weiss (Syracuse University Press, Syracuse, NY, 1971a), pp. 141–145

    Google Scholar 

  • C.D. Lundergan, D.S. Drumheller, Propagation of stress waves in a laminated plate composite. J. Appl. Phys. 42, 669–675 (1971b)

    Article  Google Scholar 

  • P.C. Lysne, W.J. Halpin, Shock compression of porous iron in the region of incomplete compaction. J. Appl. Phys. 39, 5488–5495 (1968)

    Article  Google Scholar 

  • P.C. Lysne, One-dimensional theory of polarization by shock waves: application to quartz gauges. J. Appl. Phys. 43, 425–431 (1972b)

    Article  Google Scholar 

  • P.C. Lysne, Dielectric breakdown of shock-loaded PZT 65/35. J. Appl. Phys. 44, 577–582 (1973)

    Article  Google Scholar 

  • P.C. Lysne, Prediction of dielectric breakdown in shock-loaded ferroelectric ceramics. J. Appl. Phys. 46, 230–232 (1975)

    Article  Google Scholar 

  • P.C. Lysne, L.C. Bartel, Electromechanical response of PZT 65/35 subjected to axial shock loading. J. Appl. Phys. 46, 222–229 (1975)

    Article  Google Scholar 

  • P.C. Lysne, Dielectric properties of shock wave compressed PZT 95/5. J. Appl. Phys. 48, 1020–1023 (1976)

    Article  Google Scholar 

  • P.C. Lysne, Shock-induced polarization of a ferroelectric ceramic. J. Appl. Phys. 48, 1024–1031 (1977)

    Article  Google Scholar 

  • P.C. Lysne, Dielectric properties of shock wave compressed PMMA and an alumina-loaded epoxy. J. Appl. Phys. 49, 4186–4190 (1978a)

    Article  Google Scholar 

  • P.C. Lysne, Electrical response of relaxing dielectrics compressed by shock waves: the axial-mode problem. J. Appl. Phys. 49, 4180–4185 (1978b)

    Article  Google Scholar 

  • T.E. Michaels, Orientation dependence of elastic precursor delay in single crystal tungsten, Ph.D. thesis, Physics Department, Washington State University, Pullman, WA, 1972

    Google Scholar 

  • D.E. Munson, L.M. Barker, Dynamically determined pressure-volume relationships for aluminum, copper, and lead. J. Appl. Phys. 37(4), 1652–1660 (1966)

    Article  Google Scholar 

  • F.W. Neilson, W.B. Benedick, The piezoelectric response of quartz beyond its Hugoniot elastic limit. Bull. Am. Phys. Soc. Ser. II 5(7), 511 (1960)

    Google Scholar 

  • F.W. Neilson, W.B. Benedick, W.P. Brooks, R.A. Graham, G.W. Anderson, Electrical and optical effects of shock waves in crystalline quartz, in Les Ondes de Detonation, ed. by G. Ribaud (Centre National de la Recherche Scientifique, Paris, 1962), pp. 391–419

    Google Scholar 

  • J.W. Nunziato, K.W. Schuler, E.K. Walsh, The bulk response of viscoelastic solids. Trans. Soc. Rheol. 16, 15–32 (1972)

    Article  MATH  Google Scholar 

  • J.W. Nunziato, K.W. Schuler, Evolution of steady shock waves in polymethyl methacrylate. J. Appl. Phys. 44, 4774–4775 (1973a)

    Article  Google Scholar 

  • J.W. Nunziato, K.W. Schuler, Shock pulse attenuation in a nonlinear viscoelastic solid. J. Mech. Phys. Solids 21, 447–457 (1973b)

    Article  Google Scholar 

  • J.W. Nunziato, K.W. Schuler, D.B. Hayes, Wave propagation calculations for nonlinear viscoelastic solids, in Computational Methods in Nonlinear Mechanics, ed. by J.T. Oden et al. (The Texas Institute for Computational Mechanics, Austin, TX, 1974a), pp. 489–498

    Google Scholar 

  • J.W. Nunziato, E.K. Walsh, K.W. Schuler, L.M. Barker, Wave propagation in non-linear viscoelastic solids, in Mechanics of Solids, ed. by C. Truesdell (Springer, Berlin, 1974b), pp. 1–108 [The second edition was published in 1984 by Springer, New York, NY]

    Chapter  Google Scholar 

  • J.W. Nunziato, K.W. Schuler, E.K. Walsh, The influence of precompression on acceleration wave propagation in a nonlinear viscoelastic material. J. Appl. Mech. 42, 731–732 (1975)

    Article  Google Scholar 

  • R.P. Reed, J.I. Greenwoll, The PVDF Piezoelectric Polymer Shock-Stress Sensor. Sandia National Laboratories Report SAND88-2907 (Sandia National Laboratory, Albuquerque, NM, 1989)

    Google Scholar 

  • R.P. Reed, R.A. Graham, L.M. Moore, L.M. Lee, D.J. Fogelson, F. Bauer, The Sandia standard for PVDF shock sensors, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, Amsterdam, 1990), pp. 825–828

    Google Scholar 

  • R.W. Rohde, O.E. Jones, Mechanical and piezoelectric properties of shock-loaded X-cut quartz at 573 degrees K. Rev. Sci. Instrum. 39(3), 313–316 (1968)

    Article  Google Scholar 

  • R.W. Rohde, Dynamic yield behavior of shock-loaded iron from 76 to 573 degrees K. Acta Metall. 17, 353–363 (1969)

    Article  Google Scholar 

  • R.W. Rohde, R.A. Graham, The effect of hydrostatic pressure on the martensitic reversal of an iron-nickel-carbon alloy. Trans. Metall. Soc. AIME 245, 2441–2445 (1969)

    Google Scholar 

  • R.W. Rohde, W.C. Leslie, R.C. Glenn, The dynamic yield behavior of annealed and cold-worked Fe-0.17 pct Ti alloy. Met. Trans. 3, 323–328 (1972)

    Article  Google Scholar 

  • R.W. Rohde, R.A. Graham, Stability of the magnetic phase transformation in shocked Fe-Ni alloys. Philos. Mag. 28, 941–943 (1973)

    Article  Google Scholar 

  • K.W. Schuler, Propagation of steady shock waves in polymethyl methacrylate. J. Mech. Phys. Solids 18, 277–293 (1970)

    Article  Google Scholar 

  • K.W. Schuler, The speed of propagation of release waves in polymethyl methacrylate, in Proceedings of the 5th International Detonation Symposium, Pasadena, CA, Office of Naval Research Report ONR ACR-184, ed. by S.J. Jacobs, R. Roberts (Office of Naval Research, San Diego, CA, 1971), pp. 470–477

    Google Scholar 

  • K.W. Schuler, J.W. Nunziato, The dynamic mechanical behavior of polymethyl methacrylate. Rheol. Acta 13, 773–781 (1974)

    Article  Google Scholar 

  • K.W. Schuler, J.W. Nunziato, The unloading and reloading behavior of shock compressed polymethyl methacrylate. J. Appl. Phys. 47, 2995–2998 (1976)

    Article  Google Scholar 

  • J.H. Smith, L.M. Barker, Measurement of Tilt, Impact Velocity, and Impact Time Between Two Plane Surfaces. Sandia National Laboratories Report SC-4728 (RR) (Sandia National Laboratory, Albuquerque, NM, 1962)

    Google Scholar 

  • P.L. Stanton, R.A. Graham, The electrical and mechanical response of lithium niobate shock loaded above the Hugoniot elastic limit. Appl. Phys. Lett. 31(11), 723–725 (1977)

    Article  Google Scholar 

  • A.L. Stevens, F.R. Tuler, Effect of shock precompression on the dynamic fracture strength of 1020 steel and 6061-T6 aluminum. J. Appl. Phys. 42(13), 5665–5670 (1971)

    Article  Google Scholar 

  • A.L. Stevens, L.E. Pope, Wave propagation and spallation in textured beryllium, in Metallurgical Effects at High Strain Rates, ed. by R.W. Rohde, B.M. Butcher, J.R. Holland, C.H. Karnes (Plenum, New York, NY, 1973), pp. 459–472

    Chapter  Google Scholar 

  • A.L. Stevens, L.W. Davison, W.E. Warren, Void growth during spall fracture of aluminum monocrystals, in Dynamic Crack Propagation, ed. by G.C. Sih (Noordhoff, Leyden, 1973), pp. 37–48

    Chapter  Google Scholar 

  • S.L. Thompson, CHARTD – A Computer Program for Calculating Problems of Coupled Hydrodynamic Motion and Radiation Flow in One Dimension. Sandia National Laboratories Report SC-RR-69-613 (Sandia National Laboratory, Albuquerque, NM, 1969)

    Google Scholar 

  • S.L. Thompson, Improvements in the CHARTD Radiation-Hydrodynamic Code I: Analytic Equations of State. Sandia National Laboratories Report SC-RR-70-28 (Sandia National Laboratory, Albuquerque, NM, 1970)

    Google Scholar 

  • S.L. Thompson, H.W. Lauson, Improvements in the CHARTD Radiation-Hydrodynamic Code IV: User Aid Programs. Sandia National Laboratories Report SC-DR-71-0715 (Sandia National Laboratory, Albuquerque, NM, 1972)

    Google Scholar 

  • S.L. Thompson, Improvements in the CHARTD Energy Flow Hydrodynamic Code V: 1972/73 Modifications. Sandia National Laboratories Report SLA-73-0477 (Sandia National Laboratory, Albuquerque, NM, 1973)

    Google Scholar 

  • S.L. Thompson, CSQII – An Eulerian Finite Difference Program for Two-Dimensional Material Response – Part 1 Material Sections. Sandia National Laboratories Report SAND77-1339 (Sandia National Laboratory, Albuquerque, NM, 1979)

    Google Scholar 

  • B.J. Thorne, W. Herrmann, TOODY: A Computer Program for Calculating Problems of Motion in Two Dimension. Sandia National Laboratories Report SC-RR-66-602 (Sandia National Laboratory, Albuquerque, NM, 1967)

    Google Scholar 

  • T.J. Tuler, B.M. Butcher, A criterion for the time dependence of dynamic fracture. Int. J. Fract. Mech. 4(4), 431–437 (1968)

    Google Scholar 

  • T.J. Vogler, C.S. Alexander, T.F. Thornhill, W.D. Reinhart, Pressure-Shear Experiments on Granular Materials. Sandia National Laboratories Report SAND2011-6700 (Sandia National Laboratory, Albuquerque, NM, 2011)

    Google Scholar 

  • E.K. Walsh, K.W. Schuler, Acceleration wave propagation in a nonlinear viscoelastic solid. J. Appl. Mech. 40, 705–710 (1973)

    Article  Google Scholar 

  • J.M. Winey, J.N. Johnson, Y.M. Gupta, Unloading and reloading response of aluminum single crystals: time-dependent anisotropic material description. J. Appl. Phys. 112, 093509 (2012)

    Article  Google Scholar 

  • J.L. Wise, L.C. Chhabildas, Laser interferometer measurements of refractive index in shock-compressed materials, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 441–454

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Jointly by Sandia Corporation and the Authors

About this chapter

Cite this chapter

Asay, J.R., Chhabildas, L.C., Lawrence, R.J., Sweeney, M.A. (2017). Chapter 3 The 1960s: Explosive Growth. In: Impactful Times. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-33347-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33347-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33345-8

  • Online ISBN: 978-3-319-33347-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics