Skip to main content

Pedicle Screw Fixation

  • Living reference work entry
  • First Online:

Abstract

Pedicle screws and rods are a modern posterior spinal instrumentation system that has gained widespread adoption throughout the world as the gold standard for instrumentation of the spine over the last two decades. They provide significant advantages in that they provide rigid 3-column fixation of the spine from an entirely posterior approach without reliance on intact dorsal elements. However, there is a steep learning curve for their placement, and adequate training is required prior to their routine use. They are not without their own set of unique complications. Many modifications to pedicle screws exist to improve clinical outcomes including augmentation with cement, and a variety of novel technologies can be used to help improve accuracy in their placement including fluoroscopy, computer navigation, and robotics.

This is a preview of subscription content, log in via an institution.

References

  • Avila MJ, Baaj AA (2016) Freehand thoracic pedicle screw placement: review of existing strategies and a step-by-step guide using uniform landmarks for all levels. Cureus 8(2):e501. https://doi.org/10.7759/cureus.501

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai B, Kummer FJ, Spivak J (2001) Augmentation of anterior vertebral body screw fixation by an injectable, biodegradable calcium phosphate bone substitute. Spine (Phila Pa 1976) 26:2679–2683

    Article  CAS  Google Scholar 

  • Barber JW, Boden SD, Ganey T (1997) A biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? Paper presented at Eastern Orthopaedic annual meeting, Scottsdale, Oct 1997

    Google Scholar 

  • Battula S, Schoenfeld AJ, Sahai V, Vrabec GA, Tank J, Njus GO (2008) Effect of pilot hole size on the insertion torque and pullout strength of self-tapping cortical bone screws in osteoporotic bone. J Trauma 64(4): 990–995

    Article  PubMed  Google Scholar 

  • Becker S, Chavanne A, Spitaler R et al (2008) Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J 17: 1462–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belmont PJ Jr, Klemme WR, Robinson M et al (2002) Accuracy of thoracic pedicle screws in patients with and without coronal plane spinal deformities. Spine (Phila Pa 1976) 27:1558–1566

    Article  Google Scholar 

  • Benzel EC (1995a) Biomechanically relevant anatomy and material properties of the spine and associated elements. In: Benzel EC (ed) Biomechanics of spine stabilization: principles and clinical practice. McGraw-Hill, New York, pp 3–16

    Google Scholar 

  • Benzel EC (1995b) Implant-bone interfaces. In: Benzel EC (ed) Biomechanics of spine stabilization: principles and clinical practice. McGraw-Hill, New York, pp 127–134

    Google Scholar 

  • Boucher HH (1959) A method of spinal fusion. J Bone Joint Surg Am 41-B:248–259

    Article  CAS  Google Scholar 

  • Calvert GC, Lawrence BD, Abtahi AM et al (2015) Cortical screws used to rescue failed lumbar pedicle screw construct: a biomechanical analysis. J Neurosurg Spine 22:166–172

    Article  PubMed  Google Scholar 

  • Carmouche JJ, Molinari RW, Gerlinger T, Devine J, Patience T (2005) Effects of pilot hole preparation technique on pedicle screw fixation in different regions of the osteoporotic thoracic and lumbar spine. J Neurosurg Spine 3:364–370

    Article  PubMed  Google Scholar 

  • Chang KW, Dewei Z, McAfee PC et al (1989) A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system. J Spinal Disord 1:257–266

    Google Scholar 

  • Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118:391–398

    Article  CAS  PubMed  Google Scholar 

  • Chatzistergos PE, Sapkas G, Kourkoulis SK (2010) The influence of the insertion technique on the pullout force of pedicle screws: an experimental study. Spine (Phila Pa 1976) 35:E332–E337

    Article  Google Scholar 

  • Cho W, Cho S, Wu C (2010) The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br 92-B(8):1061–1065

    Article  Google Scholar 

  • Chung KJ, Suh SW, Desai S, Song HR (2008) Ideal entry point for the thoracic pedicle screw during the free hand technique. Int Orthop 32:657–662. https://doi.org/10.1007/s00264-007-0363-4. [PMID: 17437109]

    Article  PubMed  Google Scholar 

  • Coe JD, Warden KE, Herzig MA et al (1990) Influence of bone mineral density on the fixation of the thoracolumbar implants: a comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine (Phila Pa 1976) 15:902–907

    Article  CAS  Google Scholar 

  • Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD (2004) Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J 4(4):402–408

    Article  PubMed  Google Scholar 

  • Cotrel Y, Dubousset J, Guillaumat M (1988) New universal instrumentation in spinal surgery. Clin Orthop 227: 10–23

    CAS  PubMed  Google Scholar 

  • Daftari TK, Horton WC, Hutton WC (1994) Correlations between screw hold preparation, torque of insertion, and pullout strength for spinal screws. J Spinal Disord 7:139–145

    Article  CAS  PubMed  Google Scholar 

  • Erkan S, Hsu B, Wu C et al (2010) Alignment of pedicle screws with pilot holes: can tap- ping improve screw trajectory in thoracic spines? Eur Spine J 19:71–77

    Article  PubMed  Google Scholar 

  • Fischgrund JS, Mackay M et al (1997) Volvo Award winner in clinical studies: degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine (Phila Pa 1976) 22:2807–2812

    Article  CAS  Google Scholar 

  • Fogel GR, Reitman CA, Liu W et al (2003) Physical characteristics of polyaxial-headed pedicle screws and biomechanical comparison of load with their failure. Spine (Phila Pa 1976) 28:470–473

    Google Scholar 

  • Gao M, Lei W, Wu Z, Liu D, Shi L (2011) Biomechanical evaluation of fixation strength of conventional and expansive pedicle screws with or without calcium based cement augmentation. Clin Biomech 26(3): 238–244

    Article  Google Scholar 

  • Gelalis ID, Paschos NK, Pakos EE et al (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255

    Article  PubMed  Google Scholar 

  • George DC, Krag MH, Johnson CC et al (1991) Hole preparation techniques for transpedicle screws. Effect on pull-out strength from human cadaveric vertebrae. Spine (Phila Pa 1976) 16:181–184

    CAS  Google Scholar 

  • Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15:11–14

    Article  CAS  Google Scholar 

  • Harrington PR (1962) Treatment of scoliosis: correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44:591–610

    Article  PubMed  Google Scholar 

  • Harrington PR (1988) The history and development of Harrington instrumentation. Clin Orthop Relat Res 227:3–5

    CAS  PubMed  Google Scholar 

  • Hirano T, Hasegawa K, Takahashi HE et al (1997) Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976) 22:2504–2509

    Article  CAS  Google Scholar 

  • Kast E, Mohr K, Richter H-P, Börm W (2006) Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 15(3):327–334

    Article  CAS  PubMed  Google Scholar 

  • King D (1944) Internal fixation for lumbosacral fusion. Am J Surg 66:357–361

    Article  Google Scholar 

  • King D (1948) Internal fixation for lumbosacral fusion. J Bone Joint Surg 30-A:560–565

    Article  Google Scholar 

  • Koller H, Zenner J, Hitzl W et al (2013) The impact of a distal expansion mechanism added to a standard pedicle screw on pullout resistance. A biomechanical study. Spine J 13(5):532–541

    Article  PubMed  Google Scholar 

  • Krag MH (1991) Biomechanics of thoracolumbar spinal fixation. A review. Spine (Phila Pa 1976) 16:S84–S99

    Article  CAS  Google Scholar 

  • Krag MH et al (1988) Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebrae interface strength. J Spinal Disord 1:287–294

    Article  CAS  PubMed  Google Scholar 

  • Kwok AW, Finkesltein JA et al (1996) Insertional torque and pull-out strength of conical and cylindrical pedicle screws in cadaveric bone. Spine (Phila Pa 1976) 21:2429–2434

    Article  CAS  Google Scholar 

  • Lehman RA Jr, Polly DW Jr, Kuklo TR et al (2003) Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine (Phila Pa 1976) 28:2058–2065

    Article  Google Scholar 

  • Lei W, Wu Z (2006) Biomechanical evaluation of an expansive pedicle screw in calf vertebrae. Eur Spine J 15(3):321–326

    Article  PubMed  Google Scholar 

  • Lill CA, Schneider E, Goldhahn J, Haslemann A, Zeifang F (2006) Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae. Arch Orthop Trauma Surg 126(10):686–694

    Article  CAS  PubMed  Google Scholar 

  • Liu YK, Njus GO, Bahr PA, Geng P (1990) Fatigue life improvement of nitrogen-ion- implanted pedicle screws. Spine (Phila Pa 1976) 15:311–317

    Article  CAS  Google Scholar 

  • Liu D, Shi L, Lei W et al (2016) Biomechanical Comparison of Expansive Pedicle Screw and Polymethylmethacrylate-augmented Pedicle Screw in Osteoporotic Synthetic Bone in Primary Implantation: An Experimental Study. Clin Spine Surg 29(7):E351–357

    Article  PubMed  Google Scholar 

  • Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB (1999) Complications associated with pedicle screws. J Bone Joint Surg Am 81(11):1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Lorenz M, Zindric M, Schwaegler P (1991) A comparison of single-level fusions with and without hardware. Spine (Phila Pa 1976) 16:S455–S458

    Article  CAS  Google Scholar 

  • Louis R (1986) Fusion of the lumbar and sacral spine by internal fixation with screw plates. Clin Orthop 203:18–33

    Google Scholar 

  • Louis R (1996) Application of the Louis system for thoracolumbar and lumbosacral spine stabilization. In: Fessler RG, Haid RW (eds) Current techniques in spinal stabilization. McGraw-Hill, New York, pp 399–407

    Google Scholar 

  • Ludwig SC, Kramer DL, Vaccaro AR, Albert TJ (1999) Transpedicle screw fixation of the cervical spine. Clin Orthop Relat Res 359:77–88

    Article  Google Scholar 

  • Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ (2000) Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques. Spine (Phila Pa 1976) 25(13):1655–1667

    Article  CAS  Google Scholar 

  • Luque ER (1980) Segmental spinal instrumentation: a method of rigid internal fixation of the spine to induce arthrodesis. Orthop Trans 4:391

    Google Scholar 

  • Mason A, Paulsen R, Babuska JM et al (2014) The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine 20:196–203

    Article  PubMed  Google Scholar 

  • McAfee PC, Weiland DJ, Carlow JJ (1991) Survivorship analysis of pedicle spinal instrumentation. Spine (Phila Pa 1976) 16:S422–S427

    Article  CAS  Google Scholar 

  • McCormack BM, Benzel EC, Adams MS et al (1995) Anatomy of the thoracic pedicle. Neurosurgery 37:303–308

    Article  CAS  PubMed  Google Scholar 

  • Mikula A, Williams SK, Anderson PA (2016) The use of intraoperative triggered electromyography to detect misplaced pedicle screws: a systematic review and meta-analysis. J Neurosurg Spine 24:624–638

    Article  PubMed  Google Scholar 

  • Ohlin A, Karrlson M, Duppe H et al (1994) Complications after transpedicular stabilization of the spine: a survivorship analysis of 163 cases. Spine (Phila Pa 1976) 19:2774–2779

    Article  CAS  Google Scholar 

  • Orndorff DG, Zdeblick TA (2017) Chapter 71: Thoracolumbar instrumentation: anterior and posterior. In: Benzel spine. Elsevier, Philadelphia, PA

    Chapter  Google Scholar 

  • Panjabi MM, Yamamoto I, Oxland TR (1991a) Biomechanical stability of the pedicle screw fixation systems in a human lumbar spine instability model. Clin Biomech 6:197–205

    Article  CAS  Google Scholar 

  • Panjabi MM, Duranceau J, Goel V, Oxland T, Takata K (1991b) Cervical human vertebrae: quantitative three-dimensional anatomy of the middle and lower regions. Spine (Phila Pa 1976) 16:861–869

    Article  CAS  Google Scholar 

  • Parker SL, McGirt MJ, Farber SH, Amin AG, Rick AM, Suk I, Bydon A, Sciubba DM, Wolinsky JP, Gokaslan ZL, Witham TF (2011) Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery 68:170–178; discussion

    Article  PubMed  Google Scholar 

  • Pelton MA, Schwartz J, Singh K (2012) Subaxial cervical and cervicothoracic fixation techniques – indications, techniques, and outcomes. Orthop Clin North Am 43(1):19–28, vii. https://doi.org/10.1016/j.ocl.2011.08.002. Epub 2011 Oct 19

    Article  Google Scholar 

  • Perna F, Borghi R, Pilla F, Stefanini N, Mazzotti A, Chehrassan M (2016) Pedicle screw insertion techniques: an update and review of the literature. Musculoskelet Surg 100:165–169

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer FM, Abernathie DL, Smith DE (2006) A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine (Phila Pa 1976) 31:867–870

    Article  Google Scholar 

  • Puno RM, Bechtold JE, Byrd JA et al (1987) Biomechanical analysis of five techniques of fixation for the lumbosacral junction. Orthop Trans 11:86

    Google Scholar 

  • Puvanesarajah, Liauw JA, Lo SF, Lina IA, Witham TF (2014) Techniques and accuracy of thoracolumbar pedicle screw placement. World J Orthop 5(2):112–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Reidy DP, Houlden D, Nolan PC et al (2001) Evaluation of electromyographic monitoring during insertion of thoracic pedicle screws. J Bone Joint Surg Br 83:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Robert WG (2000) The use of pedicle screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg 82:1458

    Article  Google Scholar 

  • Rodriguez A, Neal MT, Liu A et al (2014) Novel placement of cortical bone trajectory screws in previously instrumented pedicles for adjacent-segment lumbar disease using CT image-guided navigation. Neurosurg Focus 36:E9

    Article  PubMed  Google Scholar 

  • Rohmiller MT, Schwalm D, Glattes RC, Elalayli TG, Spengler DM (2002) Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength. Spine J 2(4):255–260

    Article  PubMed  Google Scholar 

  • Roy-Camille R, Roy-Camille M, Demeulenaere C (1970) Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metallic plates screwed into vertebral pedicles and articular apophyses. Presse Med 78(32):1447–1448

    Google Scholar 

  • Sandén B, Olerud C, Larsson S (2001) Hydroxyapatite coating enhances fixation of loaded pedicle screws: a mechanical in vivo study in sheep. Eur Spine J 10: 334–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Santoni BG, Hynes RA, McGilvray KC et al (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373

    Article  CAS  PubMed  Google Scholar 

  • Scheufler KM, Franke J, Eckardt A, Dohmen H (2011) Accuracy of image-guided pedicle screw placement using intra- operative computed tomography-based navigation with automated referencing. Part II: thoracolumbar spine. Neurosurgery 69:1307–1316

    Article  PubMed  Google Scholar 

  • Shea T, Laun J, Gonzalez-Blohm S et al (2014) Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status. Biomed Res Int 2014:748393. A) cylindrical screw B) conical screw. https://doi.org/10.1155/2014/748393

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepard MF, Davies MR, Abayan A et al (2002) Effects of polyaxial pedicle screws on lumbar construct rigidity. J Spinal Disord Tech 15:233–236

    Article  PubMed  Google Scholar 

  • Steffee AD, Biscup RS, Sitkowski DJ (1986) Segmental spine plates with pedicle screw fixation: a new internal fixation device for disorders of the lumbar and thoracolumbar spine. Clin Orthop 203:45–53

    Google Scholar 

  • Ughwanogho E, Patel NM, Baldwin KD et al (2012) Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine (Phila Pa 1976) 37:E473–E478

    Article  Google Scholar 

  • Vaccaro AR, Garfin SR (1995a) Pedicle-screw fixation in the lumbar spine. J Am Acad Orthop Surg 3(5): 263–274

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro AR, Garfin SR (1995b) Internal fixation (pedicle screw fixation) for fusion of the lumbar spine. Spine (Phila Pa 1976) 20(Suppl 24):157S–165S

    CAS  Google Scholar 

  • Vaccaro AR, Rizzolo SJ, Balderston RA, Allardyce TJ, Garfin SR, Dolinskas C, An HS (1995) Placement of pedicle screws in the thoracic spine. Part II: an anatomical and radiographic assessment. J Bone Joint Surg Am 77:1200–1206. [PMID: 7642665]

    Article  CAS  PubMed  Google Scholar 

  • Van de Kelft E, Costa F, Van der Planken D, Schils F (2012) A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976) 37(25):E1580–E1587. https://doi.org/10.1097/BRS.0b013e318271b1fa

    Article  Google Scholar 

  • Vanichkachorn JS, Vaccaro AR, An HS (1999) Chapter 19, Transpedicular screw instrumentation. In: An HS, Cotler JM (eds) Spinal instrumentation, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Verma R, Krishan S, Haendlmayer K, Mohsen A (2010) Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5992 pedicle screws. Eur Spine J 19:370–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Waschke A, Walter J, Duenisch P, Reichart R, Kalff R, Ewald C (2013) CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4500 screws. Eur Spine J 22:654–660. https://doi.org/10.1007/s00586-012-2509-3. [PMID: 23001415]

    Article  PubMed  Google Scholar 

  • West JL III, Bradford DS, Ogilvie JW (1991) Results of spinal arthrodesis with pedicle screw-plate fixation. J Bone Joint Surg Am 73:1179–1184

    Article  PubMed  Google Scholar 

  • Whitecloud TS, Skalley T, Cook SD (1989a) Roentgenographic measurements of pedicle screw penetration. Clin Orthop Relat Res 245:57–68

    Google Scholar 

  • Whitecloud TS III, Butler JC, Cohen JL et al (1989b) Complications with the variable spinal plating system. Spine 14:472–476

    Article  PubMed  Google Scholar 

  • Xu R, Ebraheim NA, Ou Y, Yeasting RA (1998) Anatomic considerations of pedicle screw placement in the thoracic spine. Roy-Camille technique versus open-lamina technique. Spine (Phila Pa 1976) 23:1065–1068. https://doi.org/10.1097/00007632-199805010-00021. [PMID: 9589548]

    Article  CAS  Google Scholar 

  • Yoganandan N, Larson SJ, Pintar F et al (1990) Biomechanics of lumbar pedicle screw/plate fixation in trauma. Neurosurgery 27:873–881

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara H, Passias PG, Errico TJ (2013) Screw-related complications in the subaxial cervical spine with the use of lateral mass versus cervical pedicle screws. A systematic review. J Neurosurg Spine 19(5):614–623

    Article  PubMed  Google Scholar 

  • Youssef JA, McKinley TO, Yerby SA, McLain RF (1999) Characteristics of pedicle screw loading: effect of sagittal insertion angle on intrapedicular bending moments. Spine (Phila Pa 1976) 24:1077–1081

    Article  CAS  Google Scholar 

  • Yuan HA, Garfin SR, Dickman CA, Marjetko SM (1994) A historical cohort study of pedicle screw fixation: thoracic and lumbar spine fusions. Spine (Phila Pa 1976) 19(Suppl):2279S–2296S

    Article  CAS  Google Scholar 

  • Zdeblick TA (1993) A prospective randomized study of lumbar fusion. Preliminary results. Spine (Phila Pa 1976) 18:983–991

    Article  CAS  Google Scholar 

  • Zdeblick TA (1995) The treatment of degenerative lumbar disorders. Spine (Phila Pa 1976) 20:126S–137S

    Article  CAS  Google Scholar 

  • Zdeblick TA, Kunz DN, Cooke ME, McCabe R (1993) Pedicle screw pullout strength. Correlation with insertional torque. Spine (Phila Pa 1976) 18:1673–1676

    Article  CAS  Google Scholar 

  • Zindrick MR, Lorenz MA (1997) Posterior lumbar fusion: overview of options and internal fixation devices. In: Frymoyer JW (ed) The adult spine. Lippincott-Raven, Philadelphia, pp 2175–2205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Hah .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jain, N.S., Hah, R.J. (2019). Pedicle Screw Fixation. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics