Skip to main content

Mechanical Implant Material Selection, Durability, Strength, and Stiffness

  • Living reference work entry
  • First Online:
Book cover Handbook of Spine Technology

Abstract

Spinal implants are manufactured from a variety of materials to meet user needs as well as the requirements of the physical and environmental demands upon the device. Commonly used materials include titanium, stainless steel, cobalt-chrome, nitinol, carbon fiber reinforced polymer (CFRP), polyetheretherketone (PEEK), silicon nitride, biodegradable polymers, and allograft bone. Material choices can be driven by requirements for strength, biocompatibility, bone ongrowth, flexibility, and radiolucency. Coatings may also be applied to the implants to further enhance physical or biological properties of the implant. These may include hydroxyapatite, titanium plasma, or a combination of these two materials. Additionally, implants may have a porous layer or open structure for improvement of osteointegration. Spinal implants are commonly made using conventional manufacturing methods such as machining and injection molding, but additive manufacturing is becoming more commonly used to produce certain implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ames CP, Cornwall GB, Crawford NR, Nottmeier E, Chamberlain RH, Sonntag VK (2002) Feasibility of a resorbably anterior cervical graft containment plate. J Neurosurg 97:440–446

    PubMed  Google Scholar 

  • Aryan HE, Lu DC, Acosta FL Jr, Hartl R, McCormick PW, Ames CP (1976) Bioabsorbable anterior cervical plating: initial multicenter clinical and radiographic experience. Spine 32:1084–1088

    Article  Google Scholar 

  • Aryan HE, Lu DC, Acosta FL Jr, Hartl R, McCormick PW, Ames CP (2007) Bioabsorbable anterior cervical plating: initial multicenter clinical and radiographic experience. Spine 32:1084–1088

    Article  PubMed  Google Scholar 

  • Assem Y, Mobbs RJ, Pelletier MH, Phan K, Walsh WR (2015) Radiological and clinical outcomes of novel Ti/PEEK combined spinal fusion cages: a systematic and preclinical evaluation. Eur Spine J 26:593

    Article  PubMed  Google Scholar 

  • Athanasakopoulos M, Mavrogenis A, Triantafyllopoulos G, Koufos S, Pneumaticos S (2013) Posterior Spinal Fusion Using Pedicle Screws. Orthopedics 36(7):e951–e957

    Article  PubMed  Google Scholar 

  • Bal BS, Rahaman MN (2012) Orthopedic applications of silicon nitride ceramics. Acta Biomater 8:2889–2898

    Article  CAS  PubMed  Google Scholar 

  • Brantigan JW, Steffee AD, Geiger JM (1991) A carbon fiber implant to aid interbody lumbar fusion. Spine 16:S277–S282

    Article  CAS  PubMed  Google Scholar 

  • Brkaric M, Baker KC, Israel R, Harding T, Montgomery DM, Herkowitz HN (2007) Early failure of bioabsorbable anterior cervical fusion plates: case report and failure analysis. J Spinal Disord Tech 20:248–254

    Article  PubMed  Google Scholar 

  • Caspar W, Geisler FH, Pitzen T, Johnson TA (1998) Anterior cervical plate stabilisation in one and two level degenerative disease: overtreatment or benefit? J Spinal Disord 11:1–11

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Yang S, Yang C, Xu W, Ye S, Wang J, Feng Y, Yang W, Liu X (2016) Outcomes observed during a 1-year clinical and radiographic follow-up of patients treated for a 1- or 2-level cervical degenerative disease using a biodegradable anterior cervical plate. J Neurosurg Spine 25:205–212

    Article  PubMed  Google Scholar 

  • Cheng BC, Burns P, Pirris S, Welch WC (2009) Load sharing and stabilization effects of anterior cervical devices. J Spinal Disord Tech 22:571–577

    Article  PubMed  Google Scholar 

  • Christensen FB, Dalstra M, Sejling F, Overgaard S, Bünger C (2000) Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel. Eur Spine J 9:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccone WJ, Motz C, Bentley C, Tasto JP (2001) Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg 9:280–288

    Article  PubMed  Google Scholar 

  • Cook SD, Dalton JE, Tan EH, Tejeiro WV, Young MJ, Whitecloud TS 3rd (1994) In vivo evaluation of anterior cervical fusions with hydroxylapatite graft material. Spine 19:1856–1866

    Article  CAS  PubMed  Google Scholar 

  • Disegi J (2009) Implant materials. Wrought titanium-15% molybdenum, 2nd edn. Synthes: West Chester, PA, USA

    Google Scholar 

  • Doria C, Gallo M (2016) Roles of materials in cervical spine fusion. In: Cervical spine: minimally invasive and open surgery. Springer International Publishing, Cham, pp 159–171

    Chapter  Google Scholar 

  • Eggli PS, Müller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 232:127–138

    Google Scholar 

  • Emery SE, Fisher JR, Bohlman HH (1997) Three level anterior cervical discectomy and fusion: radiographic and clinical results. Spine 15(22):2622–2624

    Article  CAS  PubMed  Google Scholar 

  • Franco A, Nina P, Arpino L, Torelli G (2007) Use of resorbable implants for symptomatic cervical spondylosis: experience on 16 consecutive patients. J Neurosurg Sci 51:169–175

    CAS  PubMed  Google Scholar 

  • Freeman AL, Derincek A, Beaubien BP, Buttermann GR, Lew WD, Wood KB (2006) In vitro comparison of bioresorbable and titanium anterior cervical plates in the immediate postoperative condition. J Spinal Disord Tech 19:577–583

    Article  PubMed  Google Scholar 

  • Hamer AJ, Strachan JR, Black MM, Ibbotson CJ, Stockley I, Elson RA (1996) Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: a comparison of resh, fresh-frozen and irradiated bone. J Bone Joint Surg Br 78:363–368

    Article  CAS  PubMed  Google Scholar 

  • Haramati N, Staron RB, Mazel-Sperling K, Freeman K, Nickoloff EL, Barax C, Feldman F (1994) CT scans through metal scanning techniques versus hardware composition. Comput Med Imaging Graph 18:429–434

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Chang Z, Song R, Zhou K, Yu X (2016) Non-fusion procedure using PEEK rod systems for lumbar degenerative diseases: clinical experience with a 2-year follow up. BMC Musculoskelet Disord 17:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jarman-Smith M, Brady M, Kurtz SM, Cordaro NM, Walsh WR (2012) Porosity in polyaryletheretherketeone. In: Kurtz S (ed) PEEK biomaterials handbook. Elsevier, New York, pp 181–199

    Chapter  Google Scholar 

  • Kanayama M, Cummingham BW, Haggerty CJ, Abumi K, Kaneda K, McAfee PC (2000) In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg Spine 93:259–265

    Article  CAS  Google Scholar 

  • Kienle A, Graf N, Wilke H-J (2016) Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination? Spine J 16(2):235–42

    Article  PubMed  Google Scholar 

  • Kok D, Firkins PJ, Wapstra FH, Veldhuizen AG (2013) A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation. BMC Musculoskelet Disord 14:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurtz SM (2012) An overview of PEEK biomaterials. In: Kurtz SM (ed) PEEK biomaterials handbook. Elsevier, New York, pp 1–7

    Google Scholar 

  • Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Kim S, Lee SA, Song HT, Huh YM, Kim DH, Han SH, Suh JS (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27:791–803

    Article  PubMed  Google Scholar 

  • Lewis G (2013) Properties of open-cell porous metals and alloys for orthopedic applications. J Mater Sci 24:2293–2325

    CAS  Google Scholar 

  • Luca A, Lovi A, Bruno B (2013) Titanium vs peek for implants in lumbar surgery. In: European Spine Journal Conference: 36th Italian Spine Society National Congress, Bologna, Italy, p 945

    Google Scholar 

  • Lukina E, Kollerov M, Meswania J, Wertheim D, Mason P, Wagstaff P, Laka A, Noordeen H, Yoon WW, Blunn G (2015) Analysis of retrieved growth guidance sliding LSZ-4D devices for early onset scoliosis and investigation of the use of nitinol rods for this system. Spine 40:17–24

    Article  PubMed  Google Scholar 

  • McEntire BJ, Bal BS, Chevalier J, Pezzotti G (2015) Ceramics and ceramic coatings in orthopedics. J Eur Ceram Soc 35:4327–4369

    Article  CAS  Google Scholar 

  • Nabhan A, Ishak B, Steimer O, Zimmer A, Pitzen T, Steudel WI, Pape D (2009) Comparison of boresorbable and titanium plates in cervical spinal fusion: early radiologic and clinical results. J Spinal Disord Tech 22:155–161

    Article  PubMed  Google Scholar 

  • Najeeb S, Zafar M, Jhurshid Z, Siddiqui F (2016) Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 60:12–19

    Article  PubMed  Google Scholar 

  • Noshchenko A, Patel VV, Baldini T, Yun L, Lindley EM, Burger EL (2011) Thermomechanical effects of spine surgery rods composed of different metals and alloys. Spine 36:870–878

    Article  PubMed  Google Scholar 

  • Park MS, Aryan HE, Ozgur BM, Jandial R, Taylor WR (2004) Stabilization of anterior cervical spine with bioabsorbable polymer in one- and two-level fusions. Neurosurgery 54:631–635

    Article  PubMed  Google Scholar 

  • Phan K, Mobbs RJ (2016) Evolution of design of interbody cages for anterior lumbar interbody fusion. Orthop Surg 8:270–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Phan K, Hogan JA, Assem Y, Mobbs RJ (2016) PEEK-Halo effect in interbody fusion. J Clin Neurosci 24:138–140

    Article  PubMed  Google Scholar 

  • Piazzolla A, Solarino G, Gorgoglione F, Mori C, Garofalo N, Carlucci S, Montemurro V, De Giorgio G, Moretti B (2013) The treatment of adolescent idiopathic scoliosis (AIS) with cobalt-chromium-alloy (CoCR-alloy) devices: early results. In: European Spine Journal Conference: 36th Italian Spine Society National Congress, Bologna, Italy, pp 942–943

    Google Scholar 

  • Poulsson AH, Richards RG (2012) Surface modification techniques of polyetheretherketone, including plasma surface treatment. In: Kurtz S (ed) PEEK biomaterials handbook. Elsevier, New York, pp 145–161

    Chapter  Google Scholar 

  • Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ (2014) Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg 6:81–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringel F, Ryang YM, Kirschke JS, Müller BS, Wilkens JJ, Brodard J, Combs SE, Meyer B (2017) Radiolucent carbon fiber reinforced pedicle screws for treatment of spinal tumors: advantages for radiation planning and follow-up imaging. World Neurosurg 105:294–301

    Article  PubMed  Google Scholar 

  • Robotti P, Zappini G (2012) Thermal plasma spray deposition of titanium and hydroxyapatite on polyaryletheretherketone implants. In: Kurtz SM (ed) PEEK biomaterials handbook. Elsevier, New York, pp 119–143

    Chapter  Google Scholar 

  • Roeder RK, Conrad TL (2012) Bioactive polyaryletherketone composites. In: Kurtz S (ed) PEEK biomaterials handbook. Elsevier, New York, pp 163–179

    Chapter  Google Scholar 

  • Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW (2017) Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci 44:23–29

    Article  CAS  PubMed  Google Scholar 

  • Serhan H, Slivka M, Albert T, Kwak SD (2004) Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Spine J 4:379–387

    Article  PubMed  Google Scholar 

  • Sorrell CC, Hardcastle PH, Druitt RK, Howlett CR, McCartney ER (2004) Results of 15-year clinical study of reaction bonded silicon nitride intervertebral spacers. In: 7th World Biomaterials Congress. Australian Society for Biomaterials, Sydney, p 1872

    Google Scholar 

  • Stevenson S, Emery SE, Goldberg VM (1996) Factors affecting bone graft incorporation. Clin Orthop Relat Res 324:66–74

    Article  Google Scholar 

  • Tomasino A, Gebhard H, Parikh K, Wess C, Härtl R (2009) Bioabsorbable instrumentation for single-level cervical degenerative disc disease: a radiological and clinical outcome study. J Neurosurg Spine 11:529–537

    Article  PubMed  Google Scholar 

  • Torstrick FB, Evans NT, Stevens HY, Gall K, Guldberg RE (2016) Do surface porosity and pore size influence mechanical properties and cellular response to PEEK? Clin Orthop Relat Res 474:2372–2383

    Article  Google Scholar 

  • Torstrick FB, Safranski DL, Burkus JK, Chappuis JL, Lee CS, Guldberg RE, Smith KE (2017) Getting PEEK to stick to bone: the development of porous PEEK for interbody fusion devices. Tech Orthop 32:158–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Upasani VV, Farnsworth CL, Tomlinson T, Chambers RC, Tsutsui S, Slivka MA, Mahar AT, Newton PO (2009) Pedicle screw surface coatings improve fixation in nonfusion spinal constructs. Spine 34(4):335–343

    Article  PubMed  Google Scholar 

  • Vaccaro AR, Venger BH, Kelleher PM, Singh K, Carrino JA, Albert T, Hilibrand A (2002) Use of a bioabsorbable anterior cervical plate in the treatment of cervical degenerative and traumatic disk disruption. Orthopedics 25:s1191–s1199

    PubMed  Google Scholar 

  • Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion – a finite element study. Spine 31:E992–E998

    Article  PubMed  Google Scholar 

  • Walsh WR, Bertollo N, Christou C, Schaffner D, Mobbs RJ (2015) Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface. Spine J 15:1041–1049

    Article  PubMed  Google Scholar 

  • Walsh WR, Pelletier MH, Berollo N, Chrsitou C, Tan C (2016) Does PEEK/HA enhance bone formation compared with PEEK in a sheep cervical fusion model. Clin Orthop Relat Res 474:2364–2372

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Bhardwaj G, Webster TJ (2017) Antibacterial properties of PEKK for orthopedic applications. Int J Nanomedicine 12:6471–6476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster TJ, Patel AA, Rahaman MN, Bal BS (2012) Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. Acta Biomater 8:4447–4454

    Article  CAS  PubMed  Google Scholar 

  • Wilke HJ, Drumm J, Häussler K, Mack C, Steudel WI, Kettler A (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17(8):1049–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaman H, Sharif S, Kim DW, Idris MH, Suhaimi MA, Tumurkhuyag Z (2017) Machinability of cobalt-based and cobalt chromium molybdenum alloys – a review. Procedia Manuf 11:563–570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Frasier .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sommerich, R., DeCelle, M.(., Frasier, W.J. (2020). Mechanical Implant Material Selection, Durability, Strength, and Stiffness. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics