Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 329 Accesses

Abstract

We are now ready to consider generally-covariant extensions of the non-local field theories introduced in the second chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, as shown in Appendix A.3.2, the property \([\square , \square _\mathrm{r}^{-1}] = 0\) for fields with finite past still holds for globally hyperbolic space-times.

  2. 2.

    Simply put, unlike in the case of differential forms, the presence of symmetric pairs of indices when \(s \ge 2\) forces the use of \(\nabla _{\mu }\) in the action. This in turn implies that the gauge symmetry also depends on \(\nabla \) and can therefore not be achieved on arbitrary space-times.

  3. 3.

    In the Proca case the equation of motion in this form is simply modified by \(\square \rightarrow \square - m^2\).

  4. 4.

    Indeed, as discussed in Sect. 3.2.1, one cannot quantize a non-local theory without either enlarging the set of solutions in the classical limit, or losing unitarity.

  5. 5.

    These overall factors are not seen in the linearized limit because they multiply second-order terms in the action, or first-order terms in the equations of motion, and thus reduce to \(e^{c \theta } \rightarrow 1\).

  6. 6.

    The above problems could be resolved if we replace the fixed masses by a scalar field \(\phi \) sitting in a non-trivial minimum of its potential and transforming homogeneously under (4.1.34)

    This allows us to use all the curvature invariants, since we can compensate their inhomogeneous transformation with the one of the kinetic term of \(\phi \), while at the same time there are no fixed masses and thus no leftover exponential factors under (4.1.34). The problem now however is that we have one more dynamical field \(\phi \) and the gauge symmetry either neutralizes the latter or the scalar mode in \(g_{\mu \nu }\), not both. Thus, we still have one more dynamical field than what we started with.

  7. 7.

    Indeed, the direct use of Lagrange multipliers to enforce relations among fields is rather the usual procedure [13, 1827].

  8. 8.

    In the Weyl model the tensor structure will correspond to the one of a 4-tensor, but since the source is a 2-tensor, the saturated propagator will reveal the same type of structure as the one of \(h_{\mu \nu }\).

  9. 9.

    This is similar to what happens in Barvinsky’s non-local theory (3.3.2) [12]. Indeed, the linearized action is the one of GR, and has thus a healthy propagator, but the non-linear localized action contains an auxiliary tensor \(\varphi ^{\mu \nu }\) on top of the metric, and the latter has obviously ghost modes. We thus have that the propagator of the diagonalized/localized theory has ghost poles that are compensated by healthy ones, as is clear from Eq. (28) of [12]. Thus, the ghost propagator simply appears to shift the graviton propagator, canceling it exactly for \(\alpha = 1\).

  10. 10.

    With the correct normalization for the source.

  11. 11.

    Of course here too we could use the Weyl tensor but only if we accept derivatives acting on curvature, i.e. terms like \(_a {(} \tilde{\square }^{-2}\nabla ^{\rho } \nabla ^{\sigma } W_{\mu \rho \nu \sigma } {)}^\mathrm{T}\).

  12. 12.

    To see this, suppose such an action exists. Then, term \(\sim \) \( \nabla _{(\mu } \phi _{\nu )}\) in the first equation, which would correspond to the equation of motion of \(g_{\mu \nu }\), would be a total derivative \(\nabla _{\mu } \phi ^{\mu }\) in the hypothetical action. Thus, such “friction” terms cannot derive from an action.

  13. 13.

    So that we can neglect non-linearities for h.

References

  1. M. Jaccard, M. Maggiore, E. Mitsou, Phys. Rev. D 88(4), 044033 (2013). arXiv:1305.3034

  2. S. Foffa, M. Maggiore, E. Mitsou, Int. J. Mod. Phys. A 29, 1450116 (2014). arXiv:1311.3435

    Article  ADS  Google Scholar 

  3. Y. Dirian, E. Mitsou, JCAP 10, 065 (2014). arXiv:1408.5058

    Article  ADS  Google Scholar 

  4. M. Maggiore, Phys. Rev. D 89, 043008 (2014). arXiv:1307.3898

    Article  ADS  Google Scholar 

  5. M. Porrati, Phys. Lett. B 534, 209 (2002). arXiv:0203014

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Fronsdal, Phys. Rev. D 18, 3624 (1978)

    Article  ADS  Google Scholar 

  7. C. Aragone, S. Deser, Nuovo Cim. A 3, 709 (1971)

    Article  ADS  Google Scholar 

  8. C. Aragone, S. Deser, Nuovo Cim. B 57, 33 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  9. F.A. Berends, J.W. van Holten, B. de Wit, P. van Nieuwenhuizen, J. Phys. A 13, 1643 (1980)

    Article  ADS  Google Scholar 

  10. B. de Wit, D.Z. Freedman, Phys. Rev. D 21, 358 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Deser, R.P. Woodard, Phys. Rev. Lett. 99, 111301 (2007). arXiv:0706.2151

    Article  ADS  MathSciNet  Google Scholar 

  12. A.O. Barvinsky, Phys. Rev. D 85, 104018 (2012). arXiv:1112.4340

    Article  ADS  Google Scholar 

  13. M. Maggiore, M. Mancarella, Phys. Rev. D 90, 023005 (2014). arXiv:1402.0448

    Article  ADS  Google Scholar 

  14. A. Conroy, T. Koivisto, A. Mazumdar, A. Teimouri, Class. Quantum Grav. 32, 015024 (2015). arXiv:1406.4998

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Foffa, M. Maggiore, E. Mitsou, Phys. Lett. B 733, 76 (2014). arXiv:1311.3421

    Article  ADS  Google Scholar 

  16. P.G. Ferreira, A.L. Maroto, Phys. Rev. D 88(12), 123502 (2013). arXiv:1310.1238

  17. L. Modesto, S. Tsujikawa, Phys. Lett. B 727, 48 (2013). arXiv:1307.6968

    Article  ADS  MathSciNet  Google Scholar 

  18. Y. Dirian, S. Foffa, N. Khosravi, M. Kunz, M. Maggiore, JCAP 1406, 033 (2014). arXiv:1403.6068

    Article  ADS  Google Scholar 

  19. S. Nojiri, S.D. Odintsov, M. Sasaki, Y.l Zhang, Phys. Lett. B 696, 278 (2011). arXiv:1010.5375

  20. T. Koivisto, Phys. Rev. D 77, 123513 (2008). arXiv:0803.3399

    Article  ADS  MathSciNet  Google Scholar 

  21. T.S. Koivisto, Phys. Rev. D 78, 123505 (2008). arXiv:0807.3778

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Jhingan, S. Nojiri, S.D. Odintsov, M. Sami, I. Thongkool, S. Zerbini, Phys. Lett. B 663, 424 (2008). arXiv:0803.2613

    Article  ADS  Google Scholar 

  23. K. Bamba, S. Nojiri, S.D. Odintsov, M. Sasaki, Gen. Rel. Grav. 44, 1321 (2012). arXiv:1104.2692

    Article  ADS  MathSciNet  Google Scholar 

  24. S.’i. Nojiri, S.D. Odintsov, Phys. Lett. B 659, 821 (2008). arXiv:0708.0924

  25. S. Nojiri, S.D. Odintsov, Phys. Rept. 505, 59 (2011). arXiv:1011.0544

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Capozziello, E. Elizalde, S.’i. Nojiri, Phys. Lett. B 671, 193 (2009). arXiv:0809.1535

  27. N.A. Koshelev, Grav. Cosmol. 15, 220 (2009). arXiv:0809.4927

    Article  ADS  MathSciNet  Google Scholar 

  28. J.M. Cline, S. Jeon, G.D. Moore, Phys. Rev. D 70, 043543 (2004). arXiv:0311312

    Article  ADS  Google Scholar 

  29. A.O. Barvinsky, arXiv:1408.6112

  30. S. Deser, R.P. Woodard, JCAP 1311, 036 (2013). arXiv:1307.6639

    Article  ADS  Google Scholar 

  31. A. Kehagias, M. Maggiore, JHEP 1408, 029 (2014). arXiv:1401.8289

    Article  ADS  Google Scholar 

  32. N. Arkani-Hamed, H.C. Cheng, M.A. Luty, S. Mukohyama, JHEP 0405, 074 (2004). arXiv:0312099

    Article  MathSciNet  Google Scholar 

  33. E. Babichev, C. Deffayet, R. Ziour, Int. J. Mod. Phys. D 18, 2147 (2009). arXiv:0905.2943

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Babichev, C. Deffayet, Class. Quantum Grav. 30, 184001 (2013). arXiv:1304.7240

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Nicolis, R. Rattazzi, E. Trincherini, Phys. Rev. D 79, 064036 (2009). arXiv:0811.2197

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Barreira, B. Li, W.A. Hellwing, C.M. Baugh, S. Pascoli, JCAP 1409(09), 031 (2014). arXiv:1408.1084

  37. Y. Dirian, S. Foffa, M. Kunz, M. Maggiore, V. Pettorino, arXiv:1411.7692

  38. R.P. Woodard, Found. Phys. 44, 213 (2014). arXiv:1401.0254

    Article  ADS  MathSciNet  Google Scholar 

  39. C. Deffayet, R.P. Woodard, JCAP 0908, 023 (2009). arXiv:0904.0961

    Article  ADS  Google Scholar 

  40. S. Park, S. Dodelson, Phys. Rev. D 87, 024003 (2013). arXiv:1209.0836

    Article  ADS  Google Scholar 

  41. S. Dodelson, S. Park, Phys. Rev. D 90, 043535 (2014). arXiv:1310.4329

    Article  ADS  Google Scholar 

  42. S. Nesseris, S. Tsujikawa, Phys. Rev. D 90, 024070 (2014). arXiv:1402.4613

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermis Mitsou .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitsou, E. (2016). Non-local Gravity. In: Infrared Non-local Modifications of General Relativity . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-31729-8_4

Download citation

Publish with us

Policies and ethics