Skip to main content

Composite Nanowires for Room-Temperature Mechanical and Electrical Bonding

  • Chapter
  • First Online:
Advances in Nanocomposites
  • 991 Accesses

Abstract

At millimeter dimension or less, the conventional bonding technology in electronic assembly relies heavily on reflow soldering and suffers from severe performance and reliability degradation. Meanwhile, the traditional high temperature bonding process (easily reach 220 °C) tends to result in undesired thermal damage and residual stress at the bonding interface. It is therefore a major challenge to find a means to preparing room-temperature connectors or fasteners with good mechanical and electrical bonding. Very recently, composite nanowires have been used to fabricate room-temperature fasteners. In this chapter, we summarize the state-of-the-art progress on the use of composite nanowires for room-temperature mechanical and electrical bonding. Using anodic aluminum oxide (AAO) and polycarbonate (PC) membrane as templates, the fabrication of Cu/parylene and Cu/polystyrene nanowires was described, while the fabrication of carbon nanotube (CNTs) array used to connect with Cu/parylene nanowires was also introduced. Finally, the performances of the composite nanowires (Cu/parylene, Cu/polystyrene, and CNT-Cu/parylene) used as surface fastener for room-temperature mechanical and electrical bonding were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attaluri, A.C., Huang, Z., Belwalkar, A., Van, G.W., Gao, D., Misiolek, W.: Evaluation of nano-porous alumina membranes for hemodialysis application. ASAIO J. 55, 217–223 (2009)

    Article  Google Scholar 

  • Baek, S.S., Fearing, R.S.: Reducing contact resistance using compliant nickel nanowire arrays. IEEE T. Compon. Pack. T. 31, 859–868 (2009)

    Article  Google Scholar 

  • Bakshi, M.S., Poonam, S., Banipal, T.S.: Au and Au-Ag bimetallic nanoparticles synthesized by using 12-3-12 cationic Gemini surfactant as template. Mater. Lett. 61, 5004–5009 (2007)

    Article  Google Scholar 

  • Belwalkar, A., Grasing, E., Geertruyden, W.V., Huang, Z., Misiolek, W.Z.: Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Memb Sci. 319, 192–198 (2008)

    Article  Google Scholar 

  • Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied. Adv. Mater. 21, 29–53 (2009)

    Article  Google Scholar 

  • Chen, B., Goldberg Oppenheimer, P., Shean, T.A.V., Wirth, C.T., Hofmann, S., Robertson, J.: Adhesive properties of gecko-inspired mimetic via micropatterned carbon nanotube forests. J. Phys. Chem. C 116, 20047–20053 (2012)

    Article  Google Scholar 

  • Chen, H., Roy, A., Baek, J.B., Zhu, L., Qu, J., Dai, L.: Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mat. Sci. Eng. R. 70, 63–91 (2010)

    Article  Google Scholar 

  • Chen, P.L., Kuo, C.T., Tsai, T.G., Wu, B.W., Hsu, C.C., Pan, F.M.: Self-organized titanium oxide nanodot arrays by electrochemical anodization. Appl. Phys. Lett. 83, 2796–2798 (2003)

    Article  Google Scholar 

  • Chung, C.K., Chang, W.T., Liao, M.W., Chang, H.C., Lee, C.T.: Fabrication of enhanced anodic aluminum oxide performance at room temperatures using hybrid pulse anodization with effective cooling. Electrochim Acta 56, 6489–6497 (2011)

    Article  Google Scholar 

  • Chung, C.K., Liao, M.W., Khor, O.K.: Fabrication of porous anodic aluminum oxide by hybrid pulse anodization at relatively high potential. Microsyst. Technol. 20, 1827–1832 (2013)

    Article  Google Scholar 

  • Chu, S.Z., Todoroki, S., Wada, K., Inoue, S.: Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate. J. Electrochem. Soc. 149, B321–B327 (2001)

    Article  Google Scholar 

  • Chu, S.Z., Wada, K., Inoue, S., Isogai, M., Yasumori, A.: Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv. Mater. 17, 2115–2119 (2005)

    Article  Google Scholar 

  • Crouse, D., Lo, Y.H., Miller, A.E., Crouse, M.: Self-ordered pore structure of anodized aluminum on silicon and pattern transfer. Appl. Phys. Lett. 76, 49–51 (2000)

    Article  Google Scholar 

  • Cui, J., Wu, Y., Wang, Y., Zheng, H., Xu, G., Zhang, X.: A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes. Appl. Surf. Sci. 258, 5305–5311 (2012)

    Article  Google Scholar 

  • Cui, Y., Ju, Y., Wang, P., Xu, B., Kojima, N., Ichioka, K., Hosoi, A.: Carbon nanotube–Cu/parylene nanowire array electrical fasteners with high adhesion strength. Appl. Phys. Express 7, 015012 (2014a)

    Google Scholar 

  • Cui, Y., Ju, Y., Xu, B., Wang, P., Kojima, N., Ichioka, K., Hosoi, A.: Mimicking a gecko’s foot with strong adhesive strength based on a spinnable vertically aligned carbon nanotube array. RSC Adv. 4, 9056 (2014b)

    Article  Google Scholar 

  • Cui, Y., Wang, B., Zhang, M.: Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition. J. Mater. Sci. 48, 7749–7756 (2013)

    Article  Google Scholar 

  • Cui, Y., Zhang, M.: Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor. ACS Appl. Mater. Inter. 16, 8173–8178 (2013a)

    Article  Google Scholar 

  • Cui, Y., Zhang, M.: Fabrication of cross-linked carbon nanotube foam using polymethylmethacrylate microspheres as templates. J. Mater. Chem. 1, 13984–13988 (2013b)

    Article  Google Scholar 

  • Dai, H.: Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002)

    Article  Google Scholar 

  • Demoustier, S.: Preparation of polymeric and metallic nanostructures using a template-based deposition method. Mater. Sci. Eng. C 15, 269–271 (2001)

    Article  Google Scholar 

  • Ding, G.Q., Shen, W.Z., Zheng, M.J., Fan, D.H.: Synthesis of ordered large-scale ZnO nanopore arrays. Appl. Phys. Lett. 88, 103106 (2006)

    Article  Google Scholar 

  • Dong, L., Tao, X., Zhang, L., Zhang, X., Nelson, B.J.: Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7, 58–63 (2006)

    Article  Google Scholar 

  • Feng, X., Hangarter, C., Yoo, B., Rheem, Y., Lee, K.H., Myung, N.V.: Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim. Acta 53, 8103–8117 (2008)

    Article  Google Scholar 

  • Ferguson, G.S., Chaudhury, M.K., Sigal, G.B., Whitesides, G.M.: Contact adhesion of thin gold films on elastomeric supports: cold welding under ambient conditions. Science 253, 776–778 (1991)

    Article  Google Scholar 

  • Gâlcă, A.C., Kooij, E.S., Wormeester, S., Salm, C., Leca, V., Rector, J.H., Poelsema, B.: Structural and optical characterization of porous anodic aluminum oxide. J. Appl. Phys. 94, 4296–4305 (2003)

    Article  Google Scholar 

  • Gogotsi, Y.: High-temperature rubber made from carbon nanotubes. Science 330, 1332–1333 (2010)

    Article  Google Scholar 

  • Gorokh, G., Mozalev, A., Solovei, D., Khatko, V., Llobet, E., Correig, X.: Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application. Electrochim. Acta 52, 1771–1780 (2006)

    Article  Google Scholar 

  • Green, M.J., Behabtu, N., Pasquali, M., Adams, W.W.: Nanotubes as polymers. Polymer 50, 4979–4997 (2009)

    Article  Google Scholar 

  • Harman, T.C., Taylor, P.J., Spears, D.L., Walsh, M.P.: Thermoelectric quantum-dot superlattices with high ZT. J. Electron. Mater. 29, L1–L2 (1999)

    Article  Google Scholar 

  • Huczko, A.: Template-based synthesis of nanomaterials. Appl. Phys. A 70, 365–376 (2000)

    Article  Google Scholar 

  • Hyunhyub, K., Zhang, Z., Ho, J.C., Kuniharu, T., Rehan, K., Yu-Lun, C., Weizhen, C., Brett, A.C., Ali, J.: Flexible carbon-nanofiber connectors with anisotropic adhesion properties. Small 6, 22–26 (2010)

    Article  Google Scholar 

  • Jin, C., Suenaga, K., Iijima, S.: Plumbing carbon nanotubes. Nat. Nanotechnol. 7, 17–21 (2008)

    Article  Google Scholar 

  • Jin, M., Feng, X., Feng, L., Sun, T., Zhai, J., Li, T., Jiang, L.: Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 17, 1977–1981 (2005)

    Article  Google Scholar 

  • Jin, S., Lee, Y., Jeon, S.M., Sohn, B.H., Chae, W.S., Lee, J.K.: Simple fabrication of single-and multi-layer polymer nanotubes by spin-casting method within anodized aluminum oxide (AAO) templates. J. Mater. Chem. 22, 23368–23373 (2012)

    Article  Google Scholar 

  • Joo, S.W., Banerjee, A.N.: FESEM studies of densely packed aligned nickel nanopillars on silicon substrate by electrochemical deposition through porous alumina membrane. Mater. Sci. Eng. B 175, 36–40 (2010)

    Article  Google Scholar 

  • Ju, Y., Amano, M., Chen, M.: Mechanical and electrical cold bonding based on metallic nanowire surface fasteners. Nanotechnology 23, 365202 (2012)

    Article  Google Scholar 

  • Kasi, A.K., Kasi, J.K., Afzulpurkar, N., Bohez, E., Tuantranont, A.: Continuous Voltage Detachment and Etching (CVDE) technique for fabrication of nano-porous anodic aluminum oxide (AAO) tubular membrane. Nanosci. Nanotech. Lett. 4, 530–536 (2012)

    Article  Google Scholar 

  • Kapadia, R., Ko, H., Chueh, Y.L., Ho, J.C.: Hybrid core-multishell nanowire forests for electrical connector applications. Appl. Phys. Lett. 94, 263110 (2009)

    Article  Google Scholar 

  • Kim, B., Park, S., McCarthy, T.J., Russell, T.P.: Fabrication of ordered anodic aluminum oxide using a solvent-induced array of block-copolymer micelles. Small 3, 1869–1872 (2007)

    Article  Google Scholar 

  • Ko, H., Lee, J., Schubert, B.E., Chueh, Y.L., Leu, P.W., Fearing, R.S., Javey, A.: Hybrid core-shell nanowire forests as self-selective chemical connectors. Nano Lett. 9, 2054–2058 (2009)

    Article  Google Scholar 

  • Lan, Y., Wang, Y., Ren, Z.F.: Physics and applications of aligned carbon nanotubes. Adv. Phys. 60, 553–678 (2011)

    Article  Google Scholar 

  • Lau, W.W.Y., Burns, C.M.: Effect of temperature and molecular weight on the rate of spreading of polystyrene melts on plane soda lime glass surfaces. J. Polym. Sci. Pol. Phys. 12, 431–439 (1974)

    Article  Google Scholar 

  • Liao, Q., Yang, Y., Qi, J., Zhang, Y., Huang, Y., Xia, L., Liu, L.: High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes. Appl. Phys. Lett. 96, 073109 (2010)

    Article  Google Scholar 

  • Li, D., Wu, Y., Fan, R., Yang, P., Majumdar, A.: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186–3188 (2003)

    Article  Google Scholar 

  • Li, H., Xu, C.L., Zhao, G.Y., Li, H.L.: Effects of annealing temperature on magnetic property and structure of amorphous Co49Pt51 alloy nanowire arrays prepared by direct-current electrodeposition. J. Phys. Chem. B 109, 3759–3763 (2005)

    Article  Google Scholar 

  • Liu, K., Jiang, K., Wei, Y., Ge, S., Liu, P., Fan, S.: Controlled termination of the growth of vertically aligned carbon nanotube arrays. Adv. Mater. 19, 975–978 (2007)

    Article  Google Scholar 

  • Li, Y., Wang, J., Deng, Z., Wu, Y., Sun, X., Yu, D., Yang, D.: Bismuth nanotubes: a rational low-temperature synthetic route. J. Am. Chem. Soc. 123, 9904–9905 (2001)

    Article  Google Scholar 

  • Mao, R.W., Lin, S.K., Tsai, C.S.: In situ preparation of an ultra-thin nanomask on a silicon wafer. Nanotechnology 20, 685–688 (2009)

    Google Scholar 

  • Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)

    Article  Google Scholar 

  • Niu, C., Sichel, E.K., Hoch, R., Moy, D., Tennent, H.: High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997)

    Article  Google Scholar 

  • Pastore, I., Poplausks, R., Apsite, I., Pastare, I., Lombardi, F., Erts, D.: Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages. IOP Conf. Ser. Mater. Sci. Eng. 23, 012025 (2011)

    Article  Google Scholar 

  • Peng, Y., Cullis, Y., Inkson, B.: Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett. 9, 91–96 (2008)

    Article  Google Scholar 

  • Pu, L., Shi, Y., Zhu, J.M., Bao, X.M., Zhang, R., Zheng, Y.D.: Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer. Chem. Commun. 8, 942–943 (2004)

    Article  Google Scholar 

  • Qu, L., Dai, L.: Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties. Adv. Mater. 19, 3844–3849 (2007)

    Article  Google Scholar 

  • Qu, L., Dai, L., Stone, M., Xia, Z., Wang, Z.L.: Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322, 238–242 (2008)

    Article  Google Scholar 

  • Sumikura, S., Mori, S., Shimizu, S., Usami, H., Suzuki, E.: Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. J. Photochem. Photobiol. A Chem 199, 1–7 (2008)

    Article  Google Scholar 

  • Taberna, P.L., Mitra, S., Poizot, P., Simon, P., J-M, T.: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006)

    Article  Google Scholar 

  • Teshima, H., Kojima, K., Ju, Y.: Fabrication of anodic aluminum oxide template and copper nanowire surface fastener. J. Electron. Packaging 136, 044501 (2014)

    Article  Google Scholar 

  • Tomil, M.M.E., Buschmann, V., Dobrev, D., Neumann, R., Scholz, R., Schuchert, I.U., Vetter, J.: Single‐crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv. Mater. 13, 62–65 (2001)

    Article  Google Scholar 

  • Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)

    Article  Google Scholar 

  • Wang, P., Ju, Y., Chen, M., Hosoi, A., Song, Y., Iwasaki, Y.: Room-temperature bonding technique based on copper nanowire surface fastener. Appl. Phys. Express 6, 035001 (2013a)

    Article  Google Scholar 

  • Wang, P., Ju, Y., Cui, Y., Hosoi, A.: Copper/parylene core/shell nanowire surface fastener used for room-temperature electrical bonding. Langmuir 29, 13909–13916 (2013b)

    Article  Google Scholar 

  • Wang, P., Ju, Y., Hosoi, A.: Core-shell nanowire based electrical surface fastener used for room-temperature electronic packaging bonding. Electron. Mater. Lett. 10, 503–507 (2014)

    Article  Google Scholar 

  • Wang, P., Ju, Y., Chen, M.: Room-temperature electrical bonding technique based on copper/polystyrene core/shell nanowire surface fastener. Appl. Surf. Sci. 349, 774–779 (2015)

    Article  Google Scholar 

  • Wei, D., Liu, Y.: The intramolecular junctions of carbon nanotubes. Adv. Mater. 20, 2815–2841 (2008)

    Article  Google Scholar 

  • Wei, S., Shen, Y., Ge, D., Xue, M., Cao, H., Huang, S., Wang, J.X., Zhang, G.L., Zhang, F.B.: Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation. J. Membr. Sci. 325, 801–808 (2008)

    Article  Google Scholar 

  • Wei, W.X., Guang, T.F., Jinm, X.X., Zhen, J., De, Z.L.: Size-dependent orientation growth of large-area ordered Ni nanowire arrays. J. Phys. Chem. B 109, 24326 (2005)

    Article  Google Scholar 

  • Woo, L., Roland, S., Kornelius, N., Ulrich, G.S.: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. Engl. 44, 6050–6054 (2005)

    Article  Google Scholar 

  • Xu, J., Cheng, G., Zheng, R.: Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method. Appl. Surf. Sci. 256, 5006–5010 (2010)

    Article  Google Scholar 

  • Xu, J., Razeeb, K. M., Sitaraman, S. K., Mathewson, A.: The fabrication of ultra long metal nanowire bumps and their application as interconnects. Nanotechnology. IEEE C Nano 12th, pp. 1–6 (2012)

    Google Scholar 

  • Yan, B., Pham, H.T.M., Ma, Y., Zhuang, Y., Sarro, P.M.: Fabrication of in situ ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate. Appl. Phys. Lett. 91, 053117 (2007)

    Article  Google Scholar 

  • Zaraska, L., Sulka, G.D., Jaskula, M.: Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J. Solid State Electr. 15, 2427–2436 (2011)

    Article  Google Scholar 

  • Zhiyong, F., Haleh, R., Jae-won, D., Aimee, M., Onur, E., Yu-Lun, C., Paul, W.L., Johnny, C.H., Toshitake, T., Lothar, A.R., Steven, N., Kyoungsik, Y., Ming, W., Joel, W.A., Ali, J.: Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cui, Y., Ju, Y. (2016). Composite Nanowires for Room-Temperature Mechanical and Electrical Bonding. In: Meguid, S. (eds) Advances in Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-31662-8_6

Download citation

Publish with us

Policies and ethics